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Abstract
We study the interplay of information and prior (mis)perceptions in

a Phelps–Aigner–Cain-type model of statistical discrimination in the
labor market. We decompose the effect on average pay of an increase in
how informative observables are about workers’ skill into a non-negative
instrumental component, reflecting increased surplus due to better
matching of workers with tasks, and a perception-correcting component
capturing how extra information diminishes the importance of prior
misperceptions about the distribution of skills in the worker population.
We sign the perception-correcting term: it is non-negative (non-positive)
if the population was ex-ante under-perceived (over-perceived). We
then consider the implications for pay gaps between equally-skilled
populations that differ in information, perceptions, or both, and identify
conditions under which improving information narrows pay gaps.

1 Introduction
There are significant pay gaps between populations, for example between
women and men and between different ethnic groups.1 Possible contributing

∗We are grateful for useful comments from Aislinn Bohren, Davide Bordoli, Chris
Chambers, Federico Echenique, Ben Golub, Ian Jewitt, Meg Meyer, Augustus Smith, and
the audience at the LSE Perspectives on Economic Theory conference. Oscar Calvert
provided excellent research assistance.

1See e.g. U.S. Department of Labor (2025) for the United States and Office for National
Statistics (2023, 2024a, 2024b) for the United Kingdom.
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factors include discrimination, differences in human capital (potentially
caused by discrimination earlier in life), and differences in individual behavior,
such as occupation choice (also potentially influenced by discrimination).

The literature on statistical discrimination argues that these pay gaps are
partly explained by information-economic forces.2 Statistical discrimination is
possible whenever workers’ skill is imperfectly observable. One way in which
this can produce pay gaps is through misperception, whereby firms believe
that one population is less skilled on average than is actually the case. For
example, users of the website StackExchange appear to harbor misperceptions
about women’s and men’s abilities (Bohren, Imas & Rosenberg, 2019).3
Another way in which skill unobservability can generate pay gaps is through
differential informativeness, when workers’ observable characteristics (e.g.
CVs and test scores) are less predictive of skill in one population than in
another. For example, SAT scores are less predictive of academic ability for
poorer students than for richer ones (Rothstein, 2004).

In this paper, we study the interplay between misperception and inform-
ativeness in determining pay gaps, using a simple but general labor-market
model in the spirit of the statistical-discrimination literature following Phelps
(1972a, 1972b) and Aigner and Cain (1977).4 The most-emphasized result in
the literature (see Aigner & Cain, 1977) is that a population’s average pay
is higher if its observable characteristics are more informative about skill.
This finding relies on the assumption that perceptions are accurate. As for
varying the perceptions themselves, it is intuitive and in fact true that a
population is paid more on average the more favorably it is perceived.

Our starting point is the observation that these two effects interact: in
particular, a population that is both more informative and more favorably
perceived may be paid strictly less on average. To see why, consider an
economy in which every worker is either a “high type” with productivity 1
or a “low type” with productivity 0. Let p ∈ (0, 1) and q ∈ (0, 1) denote,
respectively, the true and perceived fractions of high types. Assume that
labor demand is competitive, so that each worker’s pay equals her posterior
expected productivity. If observable characteristics are completely uninform-

2See e.g. Lang and Lehmann (2012), Azmat and Petrongolo (2016), Bertrand and Duflo
(2017), Blau and Kahn (2017), Neumark (2018) and Lang and Spitzer (2020). A related but
distinct literature on “taste-based” discrimination (Becker, 1955, 1957) seeks explanations
rooted in decision-makers’ biased preferences, rather than in information.

3Similarly, Agan and Starr (2018) and Arnold, Dobbie and Yang (2018) present evid-
ence of misperceptions (held by employers and by bail judges, respectively) about racial
differences in the rates of commission of and conviction for crime in the United States.

4Specifically, we adapt the model of Chambers and Echenique (2021).
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ative about productivity, then all workers are paid q. If observables perfectly
reveal productivity, then high types are paid 1 and low types are paid 0, so
average pay is p · 1 + (1 − p) · 0 = p. Thus if the population is over-perceived,
i.e. q > p, then average pay is strictly lower if observables perfectly reveal
skill than if they are completely uninformative. The reason why this happens
is that information corrects misperceptions, which is harmful for an over-
perceived population. The implication for pay gaps is that between a perfectly
informative population I and a completely uninformative population J , the
pay gap p − qJ is negative whenever population J is over-perceived (qJ > p),
even if population I is more favorably perceived than population J (qI > qJ).

Our main theoretical contribution is to unpack this interaction between
information and misperception. In particular, we decompose the change in a
population’s average pay when observables become more informative about
skill into two terms. The first term, which we call instrumental, captures
how extra information is used to improve the assignment of workers to tasks,
thereby increasing expected surplus and (thus) pay.5 The second term, the
perception-correcting component, captures how the increased availability of
information about workers diminishes the influence of prior misperceptions
about the distribution of skills in the population. This term can be either
negative or positive. (From the previous paragraph, we know that it can be
negative enough to dominate the never-negative instrumental term.) Our
theorem signs the perception-correcting component, showing that it is non-
negative if the population was ex-ante under-perceived, non-positive if it was
over-perceived, and zero if it was accurately perceived.

We then apply our decomposition to statistical discrimination, meaning
pay gaps between populations whose (true) skill distributions are equal.
In particular, we identify conditions under which a population I that is
both more informative than and more favorably perceived than another
population J will be paid more on average. The key condition turns out
to be whether population J is under-perceived (relative to the true skill
distribution): if yes, then population I will indeed earn more on average, and
if no, then the reverse may occur (as shown above by example).

The spirit of the perception-correcting term is that prior perceptions
about a population matter less when more information is available about
individual workers. This suggests that the pay gap between two populations
will narrow when more information is made available about workers in
both populations, for example due to disclosure mandates or technological

5This term is zero in the example in the previous paragraph, since that example involves
no task assignment.
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progress. Bohren, Imas and Rosenberg (2019) confirm this intuition in a
model of subjective evaluation (rather than of pay) that can be viewed
as a special case of our model. We assess the validity of the “information
narrows pay gaps” intuition beyond this special case, identifying (stringent)
conditions under which it is correct, and showing that extra information may
widen pay gaps when these conditions do not hold. An implication is that
informativeness-increasing policy interventions can backfire.

1.1 Related literature

We contribute to the statistical-discrimination literature initiated by Phelps
(1972a, 1972b) and Aigner and Cain (1977), which shows how pay gaps can
arise from firms’ inference problem of estimating workers’ unobservable skills
from observables such as test scores and CVs.6 Within this literature, we take
inspiration from Chambers and Echenique (2021), borrowing (and slightly
enriching) their simple but general “Phelpsian” model of the labor market.

Most work on statistical discrimination has focused on the impact on pay
of differential informativeness of observables about skill, under the assumption
that firms accurately perceive the distribution of skills.7 More recent work
has argued for the importance of misperceptions in explaining empirical
patterns of discrimination (e.g. Bohren, Imas & Rosenberg, 2019; Bohren,
Haggag, Imas & Pope, 2025).8 Our analysis elucidates how informativeness
and misperception interact to determine pay gaps.

The instrumental component in our decomposition captures the familiar
instrumental value of information, defined and characterized by Blackwell
(1951, 1953).9 The idea of a perception-correcting appears in the statistics lit-
erature,10 and plays a role in, for example, persuasion (e.g. Alonso & Câmara,
2016; Onuchic & Ray, 2023) and behavioral decision theory (Bordoli, 2025).
Bordoli’s paper in particular distinguishes (informally) between instrumental
and non-instrumental effects of new information. Our results on signing the
perception-correcting component are related to Kartik, Lee and Suen (2021),
as we discuss in section 3.

6A related but distinct literature following Arrow (1973), also called “statistical discrim-
ination,” studies pay gaps arising from “bad equilibria” rather than from inference. For an
overview of both theoretical literatures, see Fang and Moro (2011) and Onuchic (2023).

7See the systematic literature review by Bohren, Haggag, Imas and Pope (2025).
8One could also consider misperceptions about the structure of correlation between

observables and skill. We discuss this possibility in section 6.
9Blackwell’s theorem is stated in section 4.1 below.

10See Laplace (1774), Wald (1947), Girsanov (1960) and Blackwell and Dubins (1962).
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1.2 Roadmap

We describe the model in section 2, and present our decomposition result in
section 3. We then draw conclusions about when there are pay gaps between
equally-skilled populations (section 4), and whether these narrow as more
information is made available (section 5). All proofs are in the appendix.

2 Model
We consider a model in the spirit of Phelps (1972b) and Aigner and Cain
(1977). Specifically, we adopt the model of Chambers and Echenique (2021),
and enrich it slightly by allowing for prior misperceptions.11

The surplus generated by a worker at a firm depends on her abilities and
on the task to which she is assigned. Formally, each worker has a skill type
θ drawn from a finite set Θ ⊂ R with |Θ| ⩾ 2. A task is a vector a ∈ RΘ,
where the interpretation is that a(θ) ∈ R is how much surplus is generated
(in expectation) when a worker of skill type θ ∈ Θ performs task a. The set
of all tasks is denoted A := RΘ.

Firms are described by their technology, meaning what tasks are available.
Formally, a firm is a non-empty finite set A ⊂ A. A firm A is called monotone
if A ⊂ AM := {a ∈ RΘ : a(θ′) > a(θ) whenever θ′ > θ}, meaning that each
task’s surplus is increasing in the worker’s skill. Considering all firms A ⊂ A
amounts to assuming that skill types are horizontally differentiated, whereas
considering only monotone firms A ⊂ AM means that skill types are vertically
differentiated (the higher a worker’s skill type, the more productive she is at
every task). We primarily focus on monotone firms.

Worker skill is unobservable, so firms must estimate skill based on observ-
ables. We describe a worker’s observables by a signal s. The signal should be
thought of as a vector of observable characteristics, perhaps including a CV
and standardized test scores. Formally, the worker population’s signal struc-
ture is a pair ⟨S, π⟩, where S is a non-empty finite set and π : S × Θ → [0, 1]
satisfies

∑
s∈S π(s|θ) = 1 for each skill type θ ∈ Θ.12 The interpretation

is that S is the set of possible signals s (e.g. possible combinations of CV
contents and test scores), and that π(s|θ) is the probability that a type-θ
worker would have signal s. We assume that for every signal s ∈ S, there is
at least one skill type θ ∈ Θ such that π(s|θ) > 0.13

11Chambers and Echenique’s results are briefly discussed in section 4.1 below.
12Signal structures are also called “information structures” or “(Blackwell) experiments.”
13This assumption is without loss of generality, because if there were a signal s ∈ S with

π(s|θ) = 0 for every θ ∈ Θ, then we could neglect s entirely, by deleting it from S.
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Firms may misperceive the distribution of skill types in the population:
firms’ subjective prior perception q ∈ ∆(Θ) of the skill type distribution may
differ from the true distribution p ∈ ∆(Θ). For simplicity, we assume that
both q and p have full support.

To estimate a worker’s ability based on her signal s ∈ S, firms apply
Bayes’s rule, informed by their prior perception q ∈ ∆(Θ) and by the signal
structure ⟨S, π⟩. Concretely, the posterior probability which firms assign to
a worker with signal s ∈ S having skill type θ ∈ Θ is

q⟨S,π⟩(θ|s) := q(θ)π(s|θ)∑
θ′∈Θ q(θ′)π(s|θ′) .

Each firm A ⊂ A produces efficiently, allocating each worker to whichever
task a ∈ A yields the highest expected surplus given that worker’s signal
s ∈ S, where the expected-surplus calculations are based on the perception
q and the signal structure ⟨S, π⟩. Thus the maximized expected surplus
calculated by a firm A ⊂ A faced with a worker with signal s ∈ S is

wA(s, q, ⟨S, π⟩) := max
a∈A

∑
θ∈Θ

q⟨S,π⟩(θ|s)a(θ).

Labor demand is competitive, so each worker is paid the expected surplus
that she generates.14 Average pay in the population is therefore

WA(p, q, ⟨S, π⟩) :=
∑
θ∈Θ

p(θ)
∑
s∈S

π(s|θ)wA(s, q, ⟨S, π⟩).

Note the differing roles of p and q: a worker’s pay depends on firms’ prior
perception q (via the posterior perception q⟨S,π⟩), but the averaging of different
workers’ pay is according to the true distribution p.

To analyze discrimination, we compare average pay across two separate
populations I and J with respective (true) skill distributions pI and pJ ,
perceptions qI and qJ , and signal structures ⟨SI , πI⟩ and ⟨SJ , πJ⟩. Each
worker’s population membership (I or J) is observable. Our focus is on
statistical discrimination in the labor market: how the gap in average pay
between the two populations is influenced by the perceptions qI , qJ and signal
structures ⟨SI , πI⟩, ⟨SJ , πJ⟩. In order to isolate statistical discrimination in
the labor market from the important but separate issue of human-capital
inequalities arising earlier in life, we always consider populations with equal
skill distributions: pI = pJ = p.15

14Our conclusions do not change if workers are instead paid a fixed (i.e. signal-
independent) fraction α ∈ (0, 1) of their expected surplus.

15For the same reason, we rule out taste-based discrimination; this is implicit in our
assumption that workers (in any population) are paid their expected surplus.
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We compare any two perceptions q and q′ in terms of their favorableness in
the likelihood-ratio order: q′ ≿LR q if q(θ)q′(θ′) ⩾ q(θ′)q′(θ) holds whenever
θ′ > θ. We say that the population is under-perceived if p ≿LR q, and
over-perceived if q ≿LR p.

We compare any two signal structures ⟨S, π⟩ and ⟨S′, π′⟩ in terms of
their informativeness in the garbling sense (Blackwell, 1951, 1953): ⟨S′, π′⟩
is more informative than ⟨S, π⟩, written ⟨S′, π′⟩ ≿G ⟨S, π⟩, if there exists a
garbling kernel from ⟨S′, π′⟩ to ⟨S, π⟩, i.e. a map g : S × S′ → [0, 1] satisfying∑

s∈S g(s|s′) = 1 for each s′ ∈ S′ such that π(s|θ) =
∑

s′∈S g(s|s′)π′(s′|θ) for
each s ∈ S and θ ∈ Θ. A signal structure ⟨S, π⟩ is said to be MLR (monotone
likelihood ratio) if S ⊂ R and π(s|θ)π(s′|θ′) ⩾ π(s|θ′)π(s′|θ) holds whenever
s′ > s and θ′ > θ.

Remark 1. An alternative interpretation of our model is that q is the
true distribution of skill in the population, which firms perceive correctly,
and that p is the distribution of skill in a sub-population of interest (or a
re-weighting of the full population according to some welfare weights16). On
this interpretation, when comparing two populations I and J with different
skill distributions qI ̸= qJ , the comparison is made “like-for-like,” between
two sub-populations with equal skill distributions pI = pJ = p.

2.1 A preliminary result

Intuition suggests that whatever the true skill distribution p and the signal
structure ⟨S, π⟩, a population’s average pay will be higher the more favorably
it is perceived ex ante. The following lemma formalizes this intuition, and
furnishes a converse. We use this result throughout the paper.

Lemma 1. Fix a skill distribution p, and consider two perceptions q and q′.

(a) If q′ is more favorable than q (q′ ≿LR q), then for any signal structure
⟨S, π⟩,

WA(p, q′, ⟨S, π⟩) ⩾ WA(p, q, ⟨S, π⟩) for any monotone firm A ⊂ AM .

(b) If q′ is not more favorable than q (q′ ̸≿LR q), then there exists a signal
structure ⟨S, π⟩ such that

WA(p, q′, ⟨S, π⟩) < WA(p, q, ⟨S, π⟩) for any monotone firm A ⊂ AM .
16As in Bergson (1938) and Samuelson (1947), and more recently in e.g. Dworczak,

Kominers and Akbarpour (2021).
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3 Decomposing the impact of new information
In this section, we present our main theoretical contribution: a decomposition
of the impact of new information on average pay into two components
reflecting distinct instrumental and perception-correcting effects, and a result
which signs these two components. The instrumental effect captures how firms
use extra information to tailor task assignment more finely to workers’ likely
skills. The perception-correcting effect reflects the diminished importance of
any misperception q ̸= p as information becomes more precise; indeed, in the
extreme case in which the signal structure becomes fully informative, the
perception q ceases entirely to matter for pay, since each worker’s skill type
is revealed and she is paid accordingly.

To describe our decomposition, fix a firm A ⊂ A, a skill distribution p,
and a perception q, and consider a shift from signal structure ⟨S, π⟩ to ⟨S′, π′⟩,
where the latter is more informative (that is, ⟨S′, π′⟩ ≿G ⟨S, π⟩). Then there
exists a joint distribution of signals and skill such that the distribution of θ
conditional on both s and s′ is the same as that conditional on s′ alone (in
other words, θ is independent of s conditional on s′). Specifically, that joint
distribution is µp ∈ ∆(Θ × S × S′) given by

µp(θ, s, s′) := p(θ)π′(s′|θ)g(s|s′) for all θ ∈ Θ, s ∈ S and s′ ∈ S′,

where g is the garbling kernel from ⟨S′, π′⟩ to ⟨S, π⟩. From the perspective
of firms, who believe that skill is distributed according to q rather than p,
the corresponding joint distribution is µq ∈ ∆(Θ × S × S′) given by

µq(θ, s, s′) := q(θ)π′(s′|θ)g(s|s′) for all θ ∈ Θ, s ∈ S and s′ ∈ S′.

For each signal s ∈ S of the less informative signal structure ⟨S, π⟩, let

âs ∈ arg max
a∈A

∑
θ∈Θ

q⟨S,π⟩(θ|s)a(θ)

denote firm A’s surplus-maximizing task choice for a worker with signal s.
Similarly, for each s′ ∈ S′, let

â′
s′ ∈ arg max

a∈A

∑
θ∈Θ

q⟨S′,π′⟩(θ|s′)a(θ)

denote a surplus-maximizing task choice under the more informative signal
structure ⟨S′, π′⟩.

We shall decompose the change WA(p, q, ⟨S′, π′⟩) − WA(p, q, ⟨S, π⟩) in
average pay into two terms. The first term, which we call perception-correcting,
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captures the effect on average pay of the change in beliefs induced by the extra
information contained in ⟨S′, π′⟩, holding fixed the firm’s task-assignment
choices s 7→ âs. The second term, called instrumental, captures the increase
of expected surplus from firms using the extra information in ⟨S′, π′⟩ to
better tailor task assignment to workers’ likely skills, holding perceptions
fixed. The formal definitions of these two effects are as follows.

Definition 1. For any firm A ⊂ A, skill distribution p, perception q, and
signal structures ⟨S′, π′⟩ ≿G ⟨S, π⟩, the perception-correcting component of
the change in average pay is

CA(p, q, ⟨S, π⟩, ⟨S′, π′⟩)
:=

∑
s∈S

µp(s)
∑

s′∈S′

[
µp(s′|s) − µq(s′|s)

] ∑
θ∈Θ

µq(θ|s, s′)âs(θ),

and the instrumental component of the change in average pay is

IA(p, q, ⟨S, π⟩, ⟨S′, π′⟩)

:=
∑

s′∈S′

µp(s′)
∑
θ∈Θ

q⟨S′,π′⟩(θ|s′)
[
â′

s′(θ) −
∑
s∈S

g(s|s′)âs(θ)
]

=
∑
s∈S

µp(s)
∑

s′∈S′

µp(s′|s)
∑
θ∈Θ

µq(θ|s, s′)
[
â′

s′(θ) − âs(θ)
]
.

Our main result asserts that the change in average pay decomposes
into perception-correcting and instrumental components, and that these
components may be signed.

Theorem 1. Fix a firm A ⊂ A, a skill distribution p, a perception q, and
signal structures ⟨S′, π′⟩ ≿G ⟨S, π⟩.

(a) The change in average pay admits the decomposition

WA(p, q, ⟨S′, π′⟩) − WA(p, q, ⟨S, π⟩)
= CA(p, q, ⟨S, π⟩, ⟨S′, π′⟩) + IA(p, q, ⟨S, π⟩, ⟨S′, π′⟩).

(b) The instrumental component IA(p, q, ⟨S, π⟩, ⟨S′, π′⟩) is non-negative.

Suppose in addition that the firm is monotone (A ⊂ AM ) and that the more
informative signal structure ⟨S′, π′⟩ is MLR.

(c) If the population is under-perceived (p ≿LR q), then the perception-
correcting component CA(p, q, ⟨S, π⟩, ⟨S′, π′⟩) is non-negative.
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(d) If the population is over-perceived (q ≿LR p), then the perception-
correcting component CA(p, q, ⟨S, π⟩, ⟨S′, π′⟩) is non-positive.

The non-negativity of the instrumental component (part (b)) is a slight
generalization of the “easy” half of Blackwell’s (1951, 1953) theorem, which
asserts the same conclusion under the additional hypothesis that the percep-
tion q is accurate, i.e. equal to the true distribution p. The familiar intuition
is that extra information cannot hurt a decision-maker, since she can always
ignore it. (Blackwell’s theorem is stated in full in section 4.1 below.)

This familiar intuition is invalid in our model, because extra information
also has the secondary effect of partially correcting any prior misperception
q ̸= p. The definition of the instrumental component IA(p, q, ⟨S, π⟩, ⟨S′, π′⟩)
shuts down this effect by holding perceptions fixed, thereby restoring the
usual non-negativity of the instrumental value of information (part (b)).

The secondary effect is isolated in the perception-correcting component,
in which task assignment is held fixed. This term is zero if the prior percep-
tion q is accurate, i.e. equal to the true distribution. For an under-perceived
population, the perception-correcting effect is non-negative (part (c)) because
as more information becomes available, firms recognize that the skill distri-
bution is better than their prior perception q suggested, leading them to pay
workers more. The same logic explains why the perception-correcting term is
non-positive for an over-perceived population (part (d)). These intuitions are
incomplete because they do not exploit the theorem’s monotonicity and MLR
assumptions, without which the result may fail, as we show in section 3.2
below.

More abstractly, the force behind the perception-correcting term is that
posterior beliefs about workers’ skill are (bary)centered somewhere between
q and p, and that this point is further from q and closer to p the more
informative is the signal structure (it is q under no information, and p under
full information). This reflects the fact that Bayesians are not dogmatic, but
rather update beliefs about a population in light of the evidence.

The idea of a perception-correcting effect has appeared in various contexts,
such as statistics,17 persuasion with heterogeneous priors (e.g. Alonso &
Câmara, 2016; Onuchic & Ray, 2023), and behavioral decision theory (Bordoli,
2025). Bordoli’s paper in particular distinguishes between “instrumental”
and “non-instrumental” effects of information. Closest to Theorem 1(c)–(d)
is the result of Kartik, Lee and Suen (2021), which formalizes a sense in
which posterior beliefs become (bary)centred further from q and closer to p

17See Laplace (1774), Wald (1947), Girsanov (1960) and Blackwell and Dubins (1962).
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as the signal structure becomes more informative. That result is formally a
special case of Theorem 1(c)–(d), and the proofs are similar.

3.1 Signing the total impact of new information

Theorem 1 can sometimes be used to determine the sign of the total impact
WA(p, q, ⟨S′, π′⟩) − WA(p, q, ⟨S, π⟩) of new information on average pay.
Corollary 1. Fix a skill distribution p, a perception q, and signal structures
⟨S′, π′⟩ ≿G ⟨S, π⟩, where ⟨S′, π′⟩ is MLR. If the population is under-perceived
(p ≿LR q), then new information increases average pay:

WA(p, q, ⟨S′, π′⟩) ⩾ WA(p, q, ⟨S, π⟩) for any monotone firm A ⊂ AM .

Conversely, if the population is over-perceived (q ≿LR p), so that the
instrumental and perception-correcting components have opposite signs, then
the total effect is ambiguous and can be negative, as the following example
shows. (This example was discussed in the introduction.)
Example 1. Suppose that skill types are binary, Θ = {0, 1}. Let ⟨S, π⟩
be an uninformative signal structure: π(s|0) = π(s|1) for every s ∈ S. Let
⟨S′, π′⟩ be fully informative: π′(s0 ∣∣ 0

)
= π′(s1 ∣∣ 1

)
= 1 for some s0 ≠ s1 in

S′. Obviously these signal structures are MLR and satisfy ⟨S′, π′⟩ ≻G ⟨S, π⟩.
Let a ∈ AM be the task given by a(θ) := θ for each θ ∈ Θ, and consider

the monotone firm A = {a}. This firm pays each worker their posterior
probability of being the high skill type: w{a}(s′′, q, ⟨S′′, π′′⟩) = q⟨S′′,π′′⟩(1|s′′)
for any signal structure ⟨S′′, π′′⟩ and signal s′′ ∈ S′′. Hence the change in
average pay is

W{a}(p, q, ⟨S′, π′⟩) − W{a}(p, q, ⟨S, π⟩)

=
[
p(0)q⟨S′,π′⟩

(
1
∣∣∣s0

)
+ p(1)q⟨S′,π′⟩

(
1
∣∣∣s1

)]
− q(1) = p(1) − q(1).

Thus if the population is strictly over-perceived (q(1) > p(1)), then adding
information strictly decreases average pay.

By Theorem 1, such a “reversal” can occur only if the perception-
correcting component is sufficiently negative to dominate the always non-
negative instrumental component. To verify this directly, observe that the
instrumental component is zero, since that term captures the use of new
information to change task assignment, and there is only one task available:

I{a}(p, q, ⟨S, π⟩, ⟨S′, π′⟩)

=
∑
s∈S

µp(s)
∑

s′∈S′

µp(s′|s)
∑
θ∈Θ

µq(θ|s, s′)[a(θ) − a(θ)] = 0.
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The perception-correcting term, on the other hand, is equal to

C{a}(p, q, ⟨S, π⟩, ⟨S′, π′⟩)

=
∑
s∈S

µp(s)
∑

s′∈S′

[
µp(s′|s) − µq(s′|s)

] ∑
θ∈Θ

µq(θ|s, s′)a(θ)

=
∑

θ′∈Θ

[
µp

(
sθ′) − µq

(
sθ′)] ∑

θ∈Θ
µq

(
θ
∣∣∣sθ′)

a(θ)

=
∑

θ′∈Θ

[
p(θ′) − q(θ′)

]
a(θ′) = p(1) − q(1).

3.2 The role of the monotonicity and MLR assumptions

In Theorem 1(c)–(d), it is assumed that the firm under consideration is
monotone and that the more informative of the two signal structures is
MLR. The following two examples illustrate the role of these assumptions by
showing how without them, the conclusions of Theorem 1(c)–(d) may fail.

Example 2. Consider Example 1, except with a different firm: let a ∈
A \ AM be the task given by a(θ) := 1 − θ for each θ ∈ Θ, and consider the
non-monotone firm A = {a}.18 This firm pays each worker their posterior
probability of being the low skill type: w{a}(s′′, q, ⟨S′′, π′′⟩) = q⟨S′′,π′′⟩(0|s′′)
for any signal structure ⟨S′′, π′′⟩ and signal s′′ ∈ S′′. Hence the change in
average pay is

W{a}(p, q, ⟨S′, π′⟩) − W{a}(p, q, ⟨S, π⟩)

=
[
p(0)q⟨S′,π′⟩

(
0
∣∣∣s0

)
+ p(1)q⟨S′,π′⟩

(
0
∣∣∣s1

)]
− q(0) = p(0) − q(0).

The instrumental component IA(p, q, ⟨S, π⟩, ⟨S′, π′⟩) is zero since task assign-
ment does not change (as firm {a} has only one task), so the perception-
correcting component is CA(p, q, ⟨S, π⟩, ⟨S′, π′⟩) = p(0)−q(0) by Theorem 1(a).
Hence the perception-correcting component is strictly negative if the popula-
tion is under-perceived (q(0) > p(0)) and strictly positive if the population
is over-perceived (q(0) < p(0)). This shows that the monotonicity hypothesis
cannot be dispensed with in Theorem 1(c)–(d).

Example 3. Suppose that skill types are ternary, Θ = {0, 1, 2}, and consider
the perception q given by q(0) = q(1) = 1/4 and q(2) = 1/2. Let ⟨S, π⟩ be an
uninformative signal structure: π(s|0) = π(s|1) = π(s|2) for every s ∈ S. Let

18The firm {a} is not monotone since by definition, a “monotone” firm A is one whose
every task a ∈ A is strictly increasing.
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⟨S′, π′⟩ reveal whether skill is 1 and nothing else: π′(s1 ∣∣ 1
)

= π′(s0,2 ∣∣ 0
)

=
π′(s0,2 ∣∣ 2

)
= 1 for some s1 ̸= s0,2 in S′. By inspection, ⟨S′, π′⟩ ≻G ⟨S, π⟩,

and the signal structure ⟨S′, π′⟩ is not MLR. Posterior beliefs about skill are
q⟨S,π⟩(·|s) = q(·) for every s ∈ S, q⟨S′,π′⟩

(
1
∣∣s1)

= 1, q⟨S′,π′⟩
(
0
∣∣s0,2)

= 1/3 and
q⟨S′,π′⟩

(
2
∣∣s0,2)

= 2/3.
Let a ∈ AM be the task given by a(θ) := θ for each θ ∈ Θ, and consider

the monotone firm A = {a}. This firm pays each worker their posterior
expected type: w{a}(s′′, q, ⟨S′′, π′′⟩) = q⟨S′′,π′′⟩(1|s′′) + 2q⟨S′′,π′′⟩(2|s′′) for any
signal structure ⟨S′′, π′′⟩ and signal s′′ ∈ S′′. Hence the change in average
pay is

W{a}(p, q, ⟨S′, π′⟩) − W{a}(p, q, ⟨S, π⟩)

=
[
p(1) · 1 + (1 − p(1)) ·

(1
3 · 0 + 2

3 · 2
)]

−
[1

4 · 1 + 1
2 · 2

]
= 1

3

(1
4 − p(1)

)
.

The instrumental component IA(p, q, ⟨S, π⟩, ⟨S′, π′⟩) is zero since task assign-
ment does not change (as firm {a} has only one task), so the perception-
correcting term is CA(p, q, ⟨S, π⟩, ⟨S′, π′⟩) = (1/4 − p(1))/3 by Theorem 1(a).

Let p(0) = 1/4 − 3δ, p(1) = 1/4 + δ and p(2) = 1/2 + 2δ, where
δ ∈ (−1/4, 1/12). If δ > 0, then the population is under-perceived (p ≿LR q),
but CA(p, q, ⟨S, π⟩, ⟨S′, π′⟩) < 0. This shows that the MLR hypothesis cannot
be dispensed with in Theorem 1(c). If δ < 0, then the population is over-
perceived (q ≿LR p), but CA(p, q, ⟨S, π⟩, ⟨S′, π′⟩) > 0, so the MLR hypothesis
cannot be dispensed with in Theorem 1(d), either.

4 Implications for statistical discrimination
In this section, we explore the implications of our decomposition result (The-
orem 1) for pay gaps between different populations. We focus on statistical
discrimination, meaning gaps in average pay between populations that have
the same (true) skill distribution.

One message of Theorem 1 is that under some conditions, a more in-
formative population will earn more on average. Lemma 1 says that a more
favorably perceived population is paid more on average. Combining these
two insights yields the following prediction about statistical discrimination:

Corollary 2. Consider two populations I and J , both with skill distribution p
and with respective perceptions qI and qJ and signal structures ⟨SI , πI⟩ and
⟨SJ , πJ⟩. Suppose that ⟨SI , πI⟩ is MLR, and that population J is under-
perceived (p ≿LR qJ). If population I is both more favorably perceived than
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and more informative than population J (i.e. qI ≿LR qJ and ⟨SI , πI⟩ ≿G

⟨SJ , πJ⟩), then monotone firms pay population I more on average:

WA(p, qI , ⟨SI , πI⟩) ⩾ WA(p, qJ , ⟨SJ , πJ⟩) for any monotone firm A ⊂ AM .

Proof. Fix any monotone firm A ⊂ AM . By Theorem 1(a),

WA(p, qI , ⟨SI , πI⟩) − WA(p, qJ , ⟨SJ , πJ⟩)
=

[
WA(p, qI , ⟨SI , πI⟩) − WA(p, qJ , ⟨SI , πI⟩)

]
+ CA(p, qJ , ⟨SJ , πJ⟩, ⟨SI , πI⟩)
+ IA(p, qJ , ⟨SJ , πJ⟩, ⟨SI , πI⟩).

The bracketed term is non-negative by Lemma 1 since qI ≿LR qJ . The
perception-correcting “CA” term is non-negative by Theorem 1(c) since
p ≿LR qJ and since the firm A is monotone and the signal structure ⟨SI , πI⟩
is MLR. The instrumental “IA” term is non-negative by Theorem 1(b). Hence
WA(p, qI , ⟨SI , πI⟩) − WA(p, qJ , ⟨SJ , πJ⟩) ⩾ 0. ■

The key takeaway from Corollary 2 is that greater informativeness and
more favorable perception translate straightforwardly into higher average pay
provided the disfavored population (J) is under-perceived ex ante. Outside of
that case, a population that is more informative and more favorably perceived
may be paid less on average, as the following example shows.

Example 1 (continued). Consider two populations, I and J , with equal
skill type distributions pI = pJ = p and respective perceptions qI and qJ .
Population I has the fully informative signal structure ⟨SI , πI⟩ := ⟨S′, π′⟩,
while population J has the totally uninformative signal structure ⟨SJ , πJ⟩ :=
⟨S, π⟩. By Theorem 1(a), the pay gap between the two populations is

WA(p, qI , ⟨SI , πI⟩) − WA(p, qJ , ⟨SJ , πJ⟩)
=

[
WA(p, qI , ⟨SI , πI⟩) − WA(p, qJ , ⟨SI , πI⟩)

]
+ CA(p, qJ , ⟨SJ , πJ⟩, ⟨SI , πI⟩)
+ IA(p, qJ , ⟨SJ , πJ⟩, ⟨SI , πI⟩).

By our previous calculations (see p. 11 above), the bracketed term equals
p(1) − p(1) = 0, the perception-correcting “CA” term equals p(1) − qJ(1), and
the instrumental “IA” term is zero, so the total pay gap is p(1) − qJ(1). Thus
if population J is strictly over-perceived (qJ(1) > p(1)), then population I is
paid strictly less than population J . This holds even if population I is more
favorably perceived (qI(1) ⩾ qJ(1)).
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4.1 The special case of accurate perceptions

Our focus in this paper is on the interplay of (mis)perceptions and information.
In this section, we comment briefly on the special case of accurate perceptions,
qI = qJ = p, in which there is no meaningful interaction.

In particular, when perceptions are accurate, the perception-correcting
effect is zero for every firm A ⊂ A:

CA(p, p, ⟨SJ , πJ⟩, ⟨SI , πI⟩)
=

∑
s∈S

µp(s)
∑

s′∈S′

[
µp(s′|s) − µp(s′|s)

] ∑
θ∈Θ

µp(θ|s, s′)âs(θ) = 0.

Hence by Theorem 1(a)–(b), a more informative population is always paid
more when perceptions are accurate. This finding and its converse together
constitute Blackwell’s theorem on the value of information:19

Theorem 2 (Blackwell, 1951, 1953). Consider two populations I and J ,
both with skill distribution p and with respective perceptions qI and qJ and
signal structures ⟨SI , πI⟩ and ⟨SJ , πJ⟩. Suppose that perceptions are accurate
(qI = qJ = p).

(a) If I is more informative than J (i.e. ⟨SI , πI⟩ ≿G ⟨SJ , πJ⟩), then every
firm pays population I more on average:

WA(p, qI , ⟨SI , πI⟩) ⩾ WA(p, qJ , ⟨SJ , πJ⟩) for every firm A ⊂ A.

(b) If I is not more informative than J (i.e. ⟨SI , πI⟩ ̸≿G ⟨SJ , πJ⟩), then
some firm pays population I strictly less on average:

WA(p, qI , ⟨SI , πI⟩) < WA(p, qJ , ⟨SJ , πJ⟩) for some firm A ⊂ A.

Chambers and Echenique (2021) introduced the model that we employ
in this paper, and used it to study statistical discrimination in the accurate-
perceptions case. In particular, they sought to characterize the following
strong “no-discrimination” property: “every firm A ⊂ A pays populations I
and J the same on average, i.e. WA(p, p, ⟨SI , πI⟩) = WA(p, p, ⟨SJ , πJ⟩).” They
obtained two geometric characterizations, proved using Choquet theory.

An alternative characterization can be obtained from Blackwell’s theorem,
which immediately implies that “no-discrimination” holds if and only if
⟨SI , πI⟩ ≿G ⟨SJ , πJ⟩ ≿G ⟨SI , πI⟩, meaning that the two populations’ signal
structures are informationally equivalent (i.e. they convey exactly the same
information about skill).

19Blackwell calls skill types “states (of the world),” tasks “actions,” firms “decision
problems,” and (expected) surplus/pay “(expected) value/payoff.”
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5 When does information narrow pay gaps?
The spirit of the perception-correcting effect is that informative signals di-
minish the importance for average pay of prior misperceptions. This suggests
that the pay gap between two differently-perceived but equally-skilled pop-
ulations narrows as the informativeness of signals improves. Bohren, Imas
and Rosenberg (2019, Proposition 1) showed that this intuition is correct in
their model of subjective evaluation, which can be thought of as a single-task
linear–Gaussian special case of our model. (We describe their model and
result in more detail in Remark 3 below.)

In this section, we explore the validity of this “information narrows pay
gaps” intuition beyond the single-task linear–Gaussian special case, obtaining
results that generalize and qualify the finding of Bohren, Imas and Rosenberg
(2019). We focus on the case in which the two populations I and J have the
same signal structure ⟨S, π⟩, differing only in their perceptions qI and qJ . Our
question is under what conditions the pay gap narrows when the populations’
common signal structure changes from ⟨S, π⟩ to a more informative signal
structure ⟨S′, π′⟩.

We identify two such conditions. The first, discussed in section 5.1, is when
the change from ⟨S, π⟩ to ⟨S′, π′⟩ is small. The second, discussed in section 5.2,
is when ⟨S′, π′⟩ is close to fully informative. Both conditions are stringent,
and we show that when they are not satisfied, extra information may widen
the pay gap. The upshot is that policy interventions or technological change
which increase informativeness can either narrow or widen misperception-
driven pay gaps in the labor market.

5.1 Slightly increased informativeness

We call a change in informativeness slight if it is small enough that it does
not change the surplus-maximizing task assignment. The formal definition is
as follows.

Definition 2. Fix a firm A ⊂ A, a perception q, and signal structures
⟨S′, π′⟩ ≿G ⟨S, π⟩, and let g be a garbling kernel from ⟨S′, π′⟩ to ⟨S, π⟩.
We say that ⟨S′, π′⟩ is slightly more informative than ⟨S, π⟩ for firm A at
perception q ifarg max

a∈A

∑
θ∈Θ

q⟨S,π⟩(θ|s)a(θ)

 ∩

arg max
a∈A

∑
θ∈Θ

q⟨S′,π′⟩(θ|s′)a(θ)

 ̸= ∅

for all signals s ∈ S and s′ ∈ S′ such that g(s|s′) > 0.
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By definition, slight increases of informativeness leave task assignment
unchanged, so that the instrumental components IA(p, q, ⟨S, π⟩, ⟨S′, π′⟩) for
q ∈ {qI , qJ} of the change in each population’s average pay are zero. Note
that for single-task firms A = {a}, all increases of informativeness are slight
(whatever the perception), since such firms’ task assignment is immutable.

Remark 2. Fix a firm A ⊂ A (a finite set, by definition) and a perception q.
Pay as a function of the posterior belief, r 7→ maxa∈A

∑
θ∈Θ r(θ)a(θ), is locally

affine at almost every belief r′ ∈ ∆(Θ).20 Hence generic signal structures
⟨S, π⟩ exclusively generate posterior beliefs at which pay is locally affine.21 For
such generic signal structures ⟨S, π⟩, any more-informative signal structure
⟨S′, π′⟩ such that the posterior beliefs q⟨S,π⟩(·|s) and q⟨S′,π′⟩(·|s′) are always
sufficiently close is slightly more informative than ⟨S, π⟩ at perception q.22

The following “positive” result identifies (admittedly stringent) conditions
under which extra information does indeed narrow the pay gap.

Proposition 1. Fix a firm A ⊂ A and two populations I and J , both
with skill distribution p, signal structure ⟨SI , πI⟩ = ⟨SJ , πJ⟩ = ⟨S, π⟩, and
respective perceptions qI and qJ . Suppose that population I is more favorably
perceived (qI ≿LR qJ), and fix a more-informative signal structure ⟨S′, π′⟩
(⟨S′, π′⟩ ≿G ⟨S, π⟩). Assume that

(i) the firm A is monotone (A ⊂ AM ),

(ii) the signal structure ⟨S′, π′⟩ is MLR,

(iii) population I is over-perceived (qI ≿LR p),

(iv) population J is under-perceived (p ≿LR qJ), and

(v) ⟨S′, π′⟩ is slightly more informative than ⟨S, π⟩.

Then the extra information narrows the pay gap:

WA(p, qI , ⟨S′, π′⟩) − WA(p, qJ , ⟨S′, π′⟩)
⩽ WA(p, qI , ⟨S, π⟩) − WA(p, qJ , ⟨S, π⟩). (⋆)

20By “locally affine at r′,” we mean that there exists a neighborhood of r′ on which pay
is affine. By “almost every,” we mean according to the Lebesgue measure on ∆(Θ).

21Formally, for any non-empty finite set S, it holds for (Lebesgue-)almost every π :
Θ × S → R such that ⟨S, π⟩ is a signal structure that for each signal s ∈ S, pay is locally
affine at the posterior belief q⟨S,π⟩(·|s) ∈ ∆(Θ).

22Explicitly: there exists an ε > 0 such that if ⟨S′, π′⟩ ≿G ⟨S, π⟩ and |q⟨S′,π′⟩(θ|s′) −
q⟨S,π⟩(θ|s)| ⩽ ε for all θ ∈ Θ and all pairs (s, s′) ∈ S × S′ with µq(s, s′) > 0, then ⟨S′, π′⟩
is slightly more informative than ⟨S, π⟩ for firm A at perception q.
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None of the assumptions in Proposition 1 can be dispensed with: if any
one of them fails, then extra information may widen the pay gap, as the
following result shows.

Proposition 2. Consider tuples (A, p, qI , qJ , ⟨S, π⟩, ⟨S′, π′⟩) comprising a
firm A ⊂ A, a skill distribution p, perceptions qI and qJ satisfying qI ≿LR qJ ,
and signal structures ⟨S, π⟩ and ⟨S′, π′⟩ satisfying ⟨S′, π′⟩ ≿G ⟨S, π⟩. For each
of the properties (i)–(v) in Proposition 1, there exist tuples which violate
that property, satisfy all four of the other properties, and violate (⋆).

A key part of Proposition 2 is the assertion that slightness (property (v))
is indispensable in Proposition 1. The tuple used to prove this is as follows.
Skill types are binary, Θ = {0, 1}. The skill distribution and perceptions
are p(1) = 1/2, qI(1) = 3/4 and qJ(1) = 1/4, so that population I is over-
perceived and population J is under-perceived. We consider the monotone
firm A = {a, ã}, where a(θ) := θ and ã(θ) := 4(2θ − 1) for each θ ∈ Θ.
For each λ ∈ [1/2, 1], let ⟨Sλ, πλ⟩ be the MLR signal structure given by
Sλ =

{
s0, s1}

and πλ

(
s0 ∣∣ 0

)
= πλ

(
s1 ∣∣ 1

)
= λ. Note that a higher value of

λ corresponds to greater informativeness. Each population’s average pay is
plotted in Figure 1 as a function of λ.23 The pay gap is not decreasing: there
are λ′ > λ in [1/2, 1] such that the pay gap is greater at λ′ than at λ.

Taken together, Propositions 1 and 2 show that whether additional
information will narrow the pay gap very much depends.

Remark 3. In this section, where we consider only slight increases of
informativeness (which leave task assignment unchanged), little insight is
lost by focusing on single-task firms A = {a}. This special case is close to
the model of Bohren, Imas and Rosenberg (2019), which aims to describe
subjective evaluation rather than pay, and accordingly features no production
choices such as task assignment. In these authors’ model, it is additionally
assumed that the primitives a, p, q and ⟨S, π⟩ are linear–Gaussian.24 In
our language, Bohren, Imas and Rosenberg’s first result implies that in the
single-task linear–Gaussian case, extra information narrows the pay gap. Our
Propositions 1 and 2 generalize and qualify this finding; for example, without

23The kinks in Figure 1 correspond to changes in task assignment. In particular, in
population I, workers with signal s1 are assigned to task ã whatever the value of λ, while
those with signal s0 are assigned to ã if λ < 9/13 and to a if λ > 9/13, and in population J ,
workers with signal s0 are assigned to task a whatever the value of λ, while those with
signal s1 are assigned to a if λ < 4/5 and to ã if λ > 4/5.

24To be precise: Θ = S = R, a(θ) = θ for every θ ∈ Θ, and (θ, s) 7→ p(θ)π(s|θ) and
(θ, s) 7→ q(θ)π(s|θ) are bi-variate Gaussian probability density functions.
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population I

population J gap

λλ
1/2 9/13 4/5 1

Figure 1: Average pay of populations I and J and the gap between them in
the tuple used to prove the indispensability of property (v).

the specific linear–Gaussian structure, extra information may widen the pay
gap unless population I is over-perceived and population J is under-perceived.

Remark 1 (continued from p. 7). Recall our alternative interpretation of the
model, in which qI and qJ are the two populations’ true skill distributions, and
a “like-for-like” comparison is being made between two sub-populations whose
skill distributions are equal, pI = pJ = p. One upshot of Propositions 1 and 2
is that extra information may narrow the pay gap in some sub-populations
(those with qI ≿LR p ≿LR qJ) and widen it in others (those with p ≿LR qI

or qJ ≿LR p).

5.2 Near-full informativeness

Our second sufficient condition for extra information to narrow the pay
gap is for the new, more informative signal structure to be “nearly fully
informative,” formally defined as follows.

Definition 3. Given ε ⩾ 0, we say that a signal structure ⟨S, π⟩ is within ε
of full information if for each signal s ∈ S, there exists a skill type θs ∈ Θ
such that π(s|θ) ⩽ επ(s|θs) for every other skill type θ ∈ Θ \ {θs}.25

The following “positive” result shows that when informativeness is in-
creased to near-full, the pay gap narrows.

25Equivalently: minθ∈Θ:π(s|θ)>0[maxθ′∈Θ\{θ} π(s|θ′)/π(s|θ)] ⩽ ε for every s ∈ S.
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Proposition 3. Fix a firm A ⊂ A and two populations I and J , both
with skill distribution p, signal structure ⟨SI , πI⟩ = ⟨SJ , πJ⟩ = ⟨S, π⟩, and
respective perceptions qI and qJ . Suppose that population I is more favorably
perceived (qI ≿LR qJ), and fix a more-informative signal structure ⟨S′, π′⟩
(⟨S′, π′⟩ ≿G ⟨S, π⟩). There exists an ε ⩾ 0 such that if ⟨S′, π′⟩ is within ε of
full information, then (⋆) on p. 17 holds. Furthermore, ε may be chosen to
be strictly positive, except if the right-hand side of (⋆) is equal to zero.

Proposition 3 is a continuity result. Under a fully informative signal
structure ⟨S′′, π′′⟩, each signal s′′ ∈ S′′ perfectly reveals some skill type
θs′′ ∈ Θ (that is, q⟨S′′,π′′⟩(θs′′ |s′′) = 1), so workers are paid

wA(s′′, qI , ⟨S′′, π′′⟩) = max
a∈A

a(θs′′) = wA(s′′, qJ , ⟨S′′, π′′⟩).

Hence there is no pay gap: WA(p, qI , ⟨S′′, π′′⟩) − WA(p, qJ , ⟨S′′, π′′⟩) = 0.
Since pay as a function of the posterior belief, r 7→ maxa∈A

∑
θ∈Θ r(θ)a(θ), is

continuous, it follows that the pay gap WA(p, qI , ⟨S′, π′⟩)−WA(p, qJ , ⟨S′, π′⟩)
can be made arbitrarily small (in particular, small enough that (⋆) holds)
by choosing a signal structure ⟨S′, π′⟩ which produces sufficiently extreme
beliefs. And the beliefs produced by signal structures ⟨S′, π′⟩ that are within
ε of full information (in fact) become arbitrarily extreme as ε > 0 shrinks.

6 Concluding thoughts
We have studied the interplay of information and prior misperceptions in
shaping average pay. Our main theoretical contribution was a decomposition
of the effect of additional information into a familiar instrumental term à la
Blackwell (1951, 1953) and a perception-correcting term arising from misper-
ception. This decomposition has implications for statistical discrimination.

In order to isolate the interaction between information and misperception,
we have deliberately abstracted away from other realistic frictions, such
as misperceptions about signal structures (as in Bohren, Haggag, Imas &
Pope, 2025), monopsony power in the labor market,26 and agency frictions
inside the firm.27 Extending our decomposition to encompass these or other
frictions is in principle straightforward: for each additional friction, there is
an extra term in the decomposition capturing how new information impacts
that friction, holding fixed both task assignment and the operation of the
other frictions.

26See e.g. Boal and Ransom (1997), Manning (2003, 2021), Card (2022), Berger, Herken-
hoff and Mongey (2022) and Yeh, Macaluso and Hershbein (2022).

27See e.g. Gibbons and Roberts (2013), Mookherjee (2006) and Holmström (2017).
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Appendix A Proof of Lemma 1
For part (a), suppose that q′ ≿LR q. It suffices to show that

wA(s, q′, ⟨S, π⟩) ⩾ wA(s, q, ⟨S, π⟩)

holds for any signal structure ⟨S, π⟩, any signal s ∈ S, and any monotone
firm A ⊂ AM . To that end, fix a signal structure ⟨S, π⟩ and a signal s ∈ S.
Since q′ ≿LR q, we have for any skill types θ′′ ⩾ θ′ in Θ that

q⟨S,π⟩(θ′|s)q′
⟨S,π⟩(θ

′′|s) = π(s|θ′)π(s|θ′′)q(θ′)q′(θ′′)/k

⩾ π(s|θ′)π(s|θ′′)q(θ′′)q′(θ′)/k = q⟨S,π⟩(θ′′|s)q′
⟨S,π⟩(θ

′|s)

where k > 0 is a constant, which is to say that q′
⟨S,π⟩(·|s) ≿LR q⟨S,π⟩(·|s).

Hence q′
⟨S,π⟩(·|s) first-order stochastically dominates q⟨S,π⟩(·|s), so for any

monotone firm A ⊂ AM , letting âs ∈ arg maxa∈A

∑
θ∈Θ q⟨S,π⟩(θ|s)a(θ), we

have

wA(s, q′, ⟨S, π⟩) = max
a∈A

∑
θ∈Θ

q′
⟨S,π⟩(θ|s)a(θ) ⩾

∑
θ∈Θ

q′
⟨S,π⟩(θ|s)âs(θ)

⩾
∑
θ∈Θ

q⟨S,π⟩(θ|s)âs(θ) = wA(s, q, ⟨S, π⟩),

where the second inequality holds since âs ∈ AM and q′
⟨S,π⟩(·|s) first-order

stochastically dominates q⟨S,π⟩(·|s).
For part (b), suppose that q′ ̸≿LR q. Then there exist θ′′ > θ′ in Θ

such that q′(θ′′)/q′(θ′) < q(θ′′)/q(θ′). Let ⟨S, π⟩ be the signal structure that
sends message s if skill is θ ∈ {θ′, θ′′}, and otherwise perfectly reveals skill:
S = {s} ∪ {sθ}θ∈Θ\{θ′,θ′′}, π(s|θ′) = π(s|θ′′) = 1 and π(sθ|θ) = 1 for every
θ ∈ Θ \ {θ′, θ′′}. Fix any monotone firm A ⊂ AM . Following the imperfectly
revealing signal s ∈ S, we have q′

⟨S,π⟩(·|s) ≺LR q⟨S,π⟩(·|s) since

q′
⟨S,π⟩(θ

′′|s)
q′

⟨S,π⟩(θ′|s) = π(s|θ′′)
π(s|θ′)

q′(θ′′)
q′(θ′) <

π(s|θ′′)
π(s|θ′)

q(θ′′)
q(θ′) =

q⟨S,π⟩(θ′′|s)
q⟨S,π⟩(θ′|s) .

Hence q′
⟨S,π⟩(·|s) is strictly first-order stochastically dominated by q⟨S,π⟩(·|s),

so letting â′
s ∈ arg maxa∈A

∑
θ∈Θ q′

⟨S,π⟩(θ|s)a(θ), we have

wA(s, q′, ⟨S, π⟩) =
∑
θ∈Θ

q′
⟨S,π⟩(θ|s)â′

s(θ) <
∑
θ∈Θ

q⟨S,π⟩(θ|s)â′
s(θ)

⩽ max
a∈A

∑
θ∈Θ

q⟨S,π⟩(θ|s)a(θ) = wA(s, q, ⟨S, π⟩),
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where the strict inequality holds since â′
s ∈ AM and q′

⟨S,π⟩(·|s) is strictly
first-order stochastically dominated by q⟨S,π⟩(·|s). When skill is fully revealed,
average pay does not depend on the prior perception: for each θ ∈ Θ\{θ′, θ′′},
q′

⟨S,π⟩(θ|sθ) = q⟨S,π⟩(θ|sθ) = 1, so

wA(s, q′, ⟨S, π⟩) = max
a∈A

a(θ) = wA(s, q, ⟨S, π⟩).

Hence WA(p, q′, ⟨S, π⟩) < WA(p, q, ⟨S, π⟩). ■

Appendix B Proof of Theorem 1
For part (a), define

K :=
∑
s∈S

µp(s)
∑

s′∈S′

µp(s′|s)
∑
θ∈Θ

µq(θ|s, s′)âs(θ).

Firstly,

WA(p, q, ⟨S, π⟩) =
∑
s∈S

µp(s)wA(s, q, ⟨S, π⟩)

=
∑
s∈S

µp(s)
∑
θ∈Θ

 ∑
s′∈S′

µq(s′|s)µq(θ|s, s′)

âs(θ)

=
∑
s∈S

µp(s)
∑

s′∈S′

µq(s′|s)
∑
θ∈Θ

µq(θ|s, s′)âs(θ)

= K − CA(p, q, ⟨S, π⟩, ⟨S′, π′⟩),

where the second equality holds because q⟨S,π⟩(θ|s) = µq(θ|s), which equals
the bracketed term by the law of total probability. Secondly,

WA(p, q, ⟨S′, π′⟩) =
∑

s′∈S′

µp(s′)wA(s′, q, ⟨S′, π′⟩)

=
∑
s∈S

µp(s)
∑

s′∈S′

µp(s′|s)
∑
θ∈Θ

q⟨S′,π′⟩(θ|s′)â′
s′(θ)

=
∑
s∈S

µp(s)
∑

s′∈S′

µp(s′|s)
∑
θ∈Θ

µq(θ|s, s′)â′
s′(θ)

= K + IA(p, q, ⟨S, π⟩, ⟨S′, π′⟩),

where the third equality holds since q⟨S′,π′⟩(θ|s′) = µq(θ|s′) = µq(θ|s, s′).
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For part (b), we have for all s ∈ S and s′ ∈ S′ that∑
θ∈Θ

µq(θ|s, s′)â′
s′(θ) =

∑
θ∈Θ

q⟨S,π⟩(θ|s′)â′
s′(θ) = max

a∈A

∑
θ∈Θ

q⟨S,π⟩(θ|s′)a(θ)

⩾
∑
θ∈Θ

q⟨S,π⟩(θ|s′)âs(θ) =
∑
θ∈Θ

µq(θ|s, s′)âs(θ),

and thus

IA(p, q, ⟨S, π⟩, ⟨S′, π′⟩)
=

∑
s∈S

µp(s)
∑

s′∈S′

µp(s′|s)
∑
θ∈Θ

µq(θ|s, s′)
[
â′

s′(θ) − âs(θ)
]
⩾ 0.

For part (c), suppose in addition that A ⊂ AM , that ⟨S′, π′⟩ is MLR, and
that p ≿LR q. It is enough to show that∑

s′∈S′

[µp(s′|s) − µq(s′|s)]
∑
θ∈Θ

µq(θ|s, s′)âs(θ) ⩾ 0 for every s ∈ S.

To that end, we fix an arbitrary s ∈ S and establish that

(1) s′ 7→
∑

θ∈Θ µq(θ|s, s′)âs(θ) is increasing, and that

(2) s′ 7→ µp(s′|s) first-order stochastically dominates s′ 7→ µq(s′|s).

To establish claim (1), note that for any t′ > s′ in S′, θ 7→ µq(θ|s, t′) is
more favorable than θ 7→ µq(θ|s, s′) since for any θ′′ > θ′ in Θ,

µq(θ′|s, s′)µq(θ′′|s, t′) = q⟨S′,π′⟩(θ′|s′)q⟨S′,π′⟩(θ′′|t′)
= π′(s′|θ′)π′(t′|θ′′)q(θ′)q(θ′′)/k

⩾ π′(t′|θ′)π′(s′|θ′′)q(θ′)q(θ′′)/k

= q⟨S′,π′⟩(θ′|t′)q⟨S′,π′⟩(θ′′|s′) = µq(θ′|s, t′)µq(θ′′|s, s′)

for a constant k > 0, where the first and last equalities use the fact that θ is
independent of s conditional on s′ under µq, and the inequality holds since
⟨S′, π′⟩ is MLR. Hence θ 7→ µq(θ|s, t′) first-order stochastically dominates
θ 7→ µq(θ|s, s′). Since âs ∈ AM , claim (1) follows.

To establish claim (2), use bars to denote CDFs, in particular

µr(s′|s) :=
∑

t′∈S′:t′⩽s′

µr(t′|s) and π′(s′|θ) :=
∑

t′∈S′:t′⩽s′

π′(t′|θ)
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for all r ∈ {p, q}, s′ ∈ S′ and θ ∈ Θ. For each s′ ∈ S′, we have

µp(s′|s) =
∑
θ∈Θ

µp(θ|s)µp(s′|θ, s)

=
∑
θ∈Θ

µp(θ|s)µp(s′|θ) =
∑
θ∈Θ

p⟨S,π⟩(θ|s)π′(s′|θ),

where the second equality holds since θ is independent of s conditional on s′

under µp. Performing the same calculation for µq and subtracting yields

µp(s′|s) − µq(s′|s) =
∑
θ∈Θ

[
p⟨S,π⟩(θ|s) − q⟨S,π⟩(θ|s)

]
π′(s′|θ) for each s′ ∈ S′,

and thus

µp(s′|s) − µq(s′|s) =
∑
θ∈Θ

[
p⟨S,π⟩(θ|s) − q⟨S,π⟩(θ|s)

]
π′(s′|θ) for each s′ ∈ S′.

Since ⟨S′, π′⟩ is MLR, π′(·|θ′) is more favorable than π′(·|θ) whenever θ′ > θ,
so π′(·|θ′) first-order stochastically dominates π′(·|θ) whenever θ′ > θ, which
is to say that for each s′ ∈ S′, θ 7→ π′(s′|θ) is decreasing. As shown in the
proof of Lemma 1, the fact that p ≿LR q implies that p⟨S,π⟩(·|s) is more
favorable than q⟨S,π⟩(·|s) for every s ∈ S, which in turn implies that for each
s ∈ S, p⟨S,π⟩(·|s) first-order stochastically dominates q⟨S,π⟩(·|s). Combining
these observations yields µp(s′|s) ⩽ µq(s′|s) for each s′ ∈ S′, which establishes
claim (2).

Finally, for part (d), suppose that q ≿LR p. Analogously to part (c), it
suffices to fix an arbitrary s ∈ S and to establish claim (1) above and

(2′) that s′ 7→ µq(s′|s) first-order stochastically dominates s′ 7→ µp(s′|s).

Claim (1) follows from exactly the argument above, while claim (2′) follows
from applying the above argument for claim (2) except with p ≿LR q replaced
by q ≿LR p. ■

Appendix C Proof of Proposition 1
By definition of “slightly more informative than,” assumption (v) implies
that each population’s instrumental component is zero:

IA(p, qI , ⟨S, π⟩, ⟨S′, π′⟩) = IA(p, qJ , ⟨S, π⟩, ⟨S′, π′⟩) = 0.
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Hence[
WA(p, qI , ⟨S′, π′⟩) − WA(p, qJ , ⟨S′, π′⟩)

]
−

[
WA(p, qI , ⟨S, π⟩) − WA(p, qJ , ⟨S, π⟩)

]
= CA(p, qI , ⟨S, π⟩, ⟨S′, π′⟩) − CA(p, qJ , ⟨S, π⟩, ⟨S′, π′⟩) ⩽ 0,

where the equality holds by Theorem 1(a), and the inequality holds because
the first “CA” term is non-positive by Theorem 1(d) (applicable by assump-
tions (i)–(iii)) and the second “CA” term is non-negative by Theorem 1(c)
(applicable by assumptions (i)–(ii) and (iv)). ■

Appendix D Proof of Proposition 2
For property (i), return to Example 2, where property (i) fails, and proper-
ties (ii) and (v) are satisfied (recall that for a single-task firm, every increase
of informativeness is slight). Recall that given a skill distribution p and
perception q, the change in average pay is

W{a}(p, q, ⟨S′, π′⟩) − W{a}(p, q, ⟨S, π⟩) = p(0) − q(0).

Thus if qI(0) < p(0) < qJ(0), then (⋆) fails, and properties (iii) and (iv) hold.
For property (ii), return to Example 3, where property (ii) fails, and

properties (i) and (v) are satisfied (again recall that for a single-task firm,
every increase of informativeness is slight). Given a skill distribution p and
perception q, the change in average pay is

W{a}(p, q, ⟨S′, π′⟩) − W{a}(p, q, ⟨S, π⟩)

=
[
p(1) · 1 + (1 − p(1)) ·

(
q(0)

q(0) + q(2) · 0 + q(2)
q(0) + q(2) · 2

)]
−

[1
4 · 1 + 1

2 · 2
]

= p(1) − 5
4 + 2(1 − p(1)) q(2)

q(0) + q(2) ,

so (⋆) fails if p(1) < 1 and qI(2)/(qI(0) + qI(2)) > qJ(2)/(qJ(0) + qJ(2)). Let

(
qJ(θ), p(θ), qI(θ)

)
:=


(

1
4 , 1

4 − 3δ, 1
4 − 6δ

)
for θ = 0(

1
4 , 1

4 + δ, 1
4 + 2δ

)
for θ = 1(

1
2 , 1

2 + 2δ, 1
2 + 4δ

)
for θ = 2
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where δ = 1/25; then (⋆) fails, and properties (iii) and (iv) both hold.
For property (iii), suppose that skill types are binary, Θ = {0, 1}. Let

a ∈ AM be the task given by a(θ) := θ for each θ ∈ Θ, and consider the
firm A = {a}; then properties (i) and (v) hold (again recall that for a
single-task firm, every increase of informativeness is slight). Let ⟨S, π⟩ be an
uninformative signal structure, i.e. one such that π(s|θ) = π(s|θ′) for every
signal s ∈ S and all skill types θ, θ′ ∈ Θ. Let ⟨S′, π′⟩ be the signal structure
given by S′ =

{
s0, s1}

and π′(s0 ∣∣ 0
)

= π′(s1 ∣∣ 1
)

= 3/4, and note that
property (ii) holds. Given a skill distribution p and perception q, the change
in average pay is

W{a}(p, q, ⟨S′, π′⟩) − W{a}(p, q, ⟨S, π⟩)

=
(1 − p(1))3

4 + p(1)1
4

(1 − q(1))3
4 + q(1)1

4
q(1)1

4 +
(1 − p(1))1

4 + p(1)3
4

(1 − q(1))1
4 + q(1)3

4
q(1)3

4 − q(1)

=
[3 − 2p(1)

3 − 2q(1) + 31 + 2p(1)
1 + 2q(1) − 4

]
q(1)

4 .

Let p(1) = 3/4, qI(1) = 1/4 and qJ(1) = 1/6; then property (iii) fails,
property (iv) holds, and (⋆) fails since

[
W{a}(p, qI , ⟨S′, π′⟩) − W{a}(p, qI , ⟨S, π⟩)

]
−

[
W{a}(p, qJ , ⟨S′, π′⟩) − W{a}(p, qJ , ⟨S, π⟩)

]
= 1

10 − 35
384 > 0.

For property (iv), apply the same argument as for (iii), except with
p(1) = 1/4, qJ(1) = 3/4 and qI(1) = 5/6.

For property (v), suppose that skill types are binary, Θ = {0, 1}, and let
the skill distribution p satisfy p(0) = p(1) = 1/2. Define a, ã ∈ A by a(θ) := θ
and ã(θ) := 4(2θ − 1) for each θ ∈ Θ, and consider the firm A = {a, ã},
noting that property (i) holds. For each λ ∈ [1/2, 1], let ⟨Sλ, πλ⟩ be the MLR
signal structure given by Sλ =

{
s0, s1}

and πλ

(
s0 ∣∣ 0

)
= πλ

(
s1 ∣∣ 1

)
= λ. For

any perception q and any λ ∈ [1/2, 1], average pay at firm A is

W{a1,a2}(p, q, ⟨Sλ, πλ⟩) =
[1

2λ + 1
2(1 − λ)

]
max

{
r0

q,λ, 4
(
2r0

q,λ − 1
)}

+
[1

2(1 − λ) + 1
2λ

]
max

{
r1

q,λ, 4
(
2r1

q,λ − 1
)}

= 1
2 max

{
r0

q,λ, 4
(
2r0

q,λ − 1
)}

+ 1
2 max

{
r1

q,λ, 4
(
2r1

q,λ − 1
)}
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where

r0
q,λ := q(1)(1 − λ)

(1 − q(1))λ + q(1)(1 − λ) and r1
q,λ := q(1)λ

(1 − q(1))(1 − λ) + q(1)λ.

Thus if perceptions are qI(1) = 3/4 and qJ(1) = 1/4, and signal structures
are ⟨S, π⟩ = ⟨S9/13, π9/13⟩ and ⟨S′, π′⟩ = ⟨S4/5, π4/5⟩, then properties (ii), (iii)
and (iv) are satisfied, ⟨S′, π′⟩ is more informative than ⟨S, π⟩, and (⋆) fails
by direct computation (as illustrated in Figure 1). By Proposition 1, since
properties (i)–(iv) hold and (⋆) fails, it must be that property (v) fails. ■

Appendix E Proof of Proposition 3
If a signal structure ⟨S′′, π′′⟩ is fully informative, meaning that for each signal
s′′ ∈ S′′ there is a skill type θs′′ ∈ Θ such that π′′(s′′|θs′′) = 1, then

wA(s′′, qI , ⟨S′′, π′′⟩) = max
a∈A

a(θ) = wA(s′′, qJ , ⟨S′′, π′′⟩) for every s′′ ∈ S′′,

so average pay is equal: WA(p, qI , ⟨S′′, π′′⟩) − WA(p, qJ , ⟨S′′, π′′⟩) = 0.
Write η := WA(p, qI , ⟨S, π⟩)−WA(p, qJ , ⟨S, π⟩). Since qI ≿LR qJ , we have

η ⩾ 0 by Lemma 1. In case η = 0, let ε = 0; then any signal structure
⟨S′, π′⟩ that is within ε of full information is itself fully informative, so
WA(p, qI , ⟨S′, π′⟩) − WA(p, qJ , ⟨S′, π′⟩) = 0 = η.

Assume for the remainder that η > 0. For any δ ∈ [0, 1], call a signal struc-
ture ⟨S′, π′⟩ δ-extreme if qK,⟨S′,π′⟩(θ|s′) ∈ [0, δ]∪ [1−δ, 1] for both populations
K ∈ {I, J}, every signal s′ ∈ S′, and every skill type θ ∈ Θ. By inspection,
pay as a function of the posterior belief, r 7→ maxa∈A

∑
θ∈Θ r(θ)a(θ), is con-

tinuous. Since any fully informative signal structure ⟨S′′, π′′⟩ is 0-extreme and
satisfies WA(p, qI , ⟨S′′, π′′⟩) − WA(p, qJ , ⟨S′′, π′′⟩) = 0, it follows that there
exists a δ ∈ (0, 1] such that any δ-extreme signal structure ⟨S′, π′⟩ satisfies
WA(p, qI , ⟨S′, π′⟩) − WA(p, qJ , ⟨S′, π′⟩) ⩽ η.

It remains only to show that for any δ ∈ (0, 1], there exists an ε > 0
such that any signal structure ⟨S′, π′⟩ that is within ε of full information is
δ-extreme. To that end, fix a δ ∈ (0, 1] and a K ∈ {I, J}, and define

ε := δ

1 − δ

qK(θs′)
1 − qK(θs′)

1
|Θ| − 1 .

ε is well-defined and strictly positive since qK has full support and |Θ| ⩾ 2.
Fix a signal structure ⟨S′, π′⟩ that is within ε of full information. Then for
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each s′ ∈ S′, there exists a skill type θs′ ∈ Θ such that π′(s′|θ) ⩽ επ′(s′|θs′)
for every other skill type θ ∈ Θ \ {θs′}. It follows that

qK,⟨S′,π′⟩(θs′ |s′) = qK(θs′)
qK(θs′) +

∑
θ∈Θ\{θs′ }

π′(s′|θ)
π′(s′|θs′ )qK(θ)

⩾
qK(θs′)

qK(θs′) + (1 − qK(θs′))(|Θ| − 1)ε = 1 − δ

and (thus) qK,⟨S′,π′⟩(θ|s′) ⩽ 1−qK,⟨S′,π′⟩(θs′ |s′) ⩽ δ for every θ ∈ Θ\{θs′}. ■
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