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Abstract

A seller discloses evidence about an object to a potential buyer, who doesn’t know the object’s
value or the profitability of its sale (the seller’s motives). I characterize optimal disclosure rules
that balance two goals: maximizing the overall probability of sale, and steering sales from lower-
to higher-profitability objects. I consider a policy that reveals the seller’s motives to the buyer, and
show that its effectiveness in inducing the seller to disclose evidence depends on the curvature of
the buyer’s demand for the object. This result refines our understanding of effective regulation of
advisor-advisee communication with and without commitment.

1 Introduction

People frequently take advice from advisors with hidden motives: broker-dealers and other financial

advisors counsel investors, but also receive sales commissions from financial product providers; digital

influencers provide product reviews to their followers, but these are often sponsored content; doctors in-

form patients of the effectiveness of different drugs and procedures, but may be rewarded by pharmaceu-

tical companies; magazines and newspapers selectively publish pieces of reporting that align with their

editorial bias. In all the mentioned settings, information receivers understand that information providers

may be biased, but are not fully aware of the extent of the conflict. For example, in the context of fi-

nancial brokers, clients understand that brokers receive sales commissions from some product providers,

but may not know the size of the commissions on each product; in the social media context, followers

understand that influencers post sponsored content, but cannot inherently know which publications are

paid advertising.

Such conflicts of interest between advisors and advisees receive much regulatory attention. The

most common recommendation, and often instituted regulation, is transparency, prescribing advisors to

let advisees know the real interests behind their recommendations. (Think of the SEC mandating that

*I am grateful for guidance from Debraj Ray, Erik Madsen and Ariel Rubinstein, and for long discussions with Joshua Weiss
and Samuel Kapon. I also thank Margaret Meyer, David Pearce, Ludvig Sinander, Dilip Abreu, Nageeb Ali, Ricardo Alonso,
Arjada Bardhi, Heski Bar-Isaac, Sylvain Chassang, Navin Kartik, Laurent Mathevet, Luis Rayo, Mauricio Ribeiro, and Dezsö
Szalay for their helpful comments.
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financial advisors disclose commissions they receive from financial product providers, or the FTC and the

UK CMA mandating digital influencers to mark their posts as “paid content” when they are sponsored by

brands, and take other steps to clarify their relation with product producers to their content consumers.1)

In this paper, I propose a model where a seller commits to a policy to disclose evidence about an

object’s value to a buyer who then chooses whether to acquire the object. The seller is an advisor with

hidden motives, because the buyer does not know how profitable the object’s sale is to the seller, and

is therefore unable to assess precisely how interested the seller is in pushing the sale. In this context, I

characterize the seller’s optimal disclosure policies, and show that they are chosen to balance two poten-

tially conflicting goals: to maximize the overall probability of the object’s sale, and to steer sales from

lower- to higher-profitability objects. Having characterized optimal advice, I consider the introduction

of a transparency policy that reveals to the buyer the profitability of the object’s sale. I show that as

a response to such policy, the seller does not necessarily become more willing to disclose information

about the object to the buyer. Specifically, the effectiveness of the transparency policy is linked to the

curvature of the buyer’s demand for the object. This novel observation is in contrast with results about

the effectiveness of transparency policies under communication protocols without commitment.

In the model, prior to the realization of the object’s profitability and of a signal about its value, the

seller commits to a rule to disclose signal realizations to the buyer. This rule assigns to each realization of

the signal a probability that the realization is disclosed to the buyer; and, importantly, this rule may also

depend on the profitability of the object’s sale. The buyer is Bayesian and updates their belief about the

object’s value based on any information the seller reveals and on the seller’s disclosure policy itself. The

probability that the buyer purchases the object is given by their “demand function,” which is increasing

in their posterior expectation of the object’s value. This “demand function” is taken as a primitive of the

model, but in Section 2.1, I provide possible micro-foundations that see the demand function as arising

from the buyer choosing between the object being offered by the seller and one or more alternative

outside options. The proposed micro-foundation introduces a possible interpretation of the curvature of

the demand function as a measure of competition in the market to which the seller belongs. Specifically,

a “more convex” demand function would arise in a more competitive market, where the buyer has access

to more potential outside options.

In Theorem 1, I show that optimal disclosure rules follow a threshold structure. Each signal realiza-

tion about the object’s value is classified as either “good news,” if above some endogenously determined

threshold, or “bad news.” For each good news realization, there is a profitability threshold such that

the realization is disclosed if the object’s profitability is above the threshold, and concealed otherwise.

Conversely, each piece of bad news is concealed if the object is sufficiently profitable, and revealed
1In Section 2.2, I discuss the market for financial advice as a “leading application” and interpret different features of the

model in that context. The market for social media influencers is equally a good fit. Because of the recent prominence of
the influencer market, official regulations have ben implemented only in the past few years; for example, the FTC revised its
“Guides Concerning Use of Endorsements and Testimonials in Advertising” in 2023, partly to put forth new guidance on which
are necessary steps for influencers to clearly reveal their material connections to brands. See Ershov and Mitchell (2023), who
study the effects of advertising disclosure regulations in social media markets; and Ershov, He, and Seiler (2023), who quantify
the prevalence of undisclosed influencer posts on Twitter.
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ȳ(x)

Evidence Realization x

Pr
ofi

ta
bi

lit
y
y

x̄
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Figure 1: Optimal disclosure rule when the buyer’s demand function is convex (left panel) and concave (right
panel). These images correspond to the optimal disclosure rules corresponding to the examples in sections 3.2.1
and 3.2.2, respectively. The gray areas represent evidence realizations that are optimally concealed by the seller,
and the white areas are optimally disclosed.

otherwise. Although this threshold-structure description of optimal signals is simple, it encompasses

disclosure policies with distinct properties, which are determined by the shape of the profitability thresh-

old function. Theorem 1 also characterizes optimal profitability thresholds, and Corollaries 1 and 2 show

that their shape depends on the curvature of the buyer’s demand function.

For an illustration, see Figure 1. In each panel, the x-axis represents the expected value of the ob-

ject induced by a realization of the evidence, and the y-axis represents the object’s profitability. The

threshold x̄ divides good-news and bad-news evidence realizations; and the function ȳ(x) is the optimal

profitability threshold dividing disclosure and non-disclosure regions. The left panel of Figure 1 illus-

trates optimal disclosure when the buyer’s demand for the object is convex. In that case, the seller can

maximize the overall probability of sale by disclosing all evidence realizations; but optimally chooses

to conceal some realizations in order to steer the buyer from low- to high-profitability objects. As a

consequence, extreme evidence realizations (very bad news or very good news) are always disclosed,

but some bad news are concealed when the object’s sale is very profitable, as are some good news if the

object is less profitable. This description is summarized by the optimal profitability threshold being a

decreasing function of the value of the evidence realization. Conversely, if the buyer’s demand for the

object is concave, then the optimal profitability threshold is an increasing function — as depicted in the

right panel of Figure 1. When demand is concave, this shape is a result of balancing the seller’s desire to

maximize overall sales by concealing all realizations; and to steer sales towards high-profitability objects

by selectively disclosing some evidence.

Having characterized optimal disclosure for a seller with hidden motives, I then consider a policy

intervention in the spirit of commonly used transparency policies. In the model, introducing a trans-

parency policy means imposing that on top of observing any information about the object that is will-
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ingly disclosed by the seller, the buyer also sees the object’s profitability to the seller. Therefore, under

the transparency policy, the seller cannot use strategic non-disclosure in order “pool” signal realizations

across objects with different profitability levels. The results in section 4 compare the seller’s optimal

disclosure policy with and without mandated transparency.

Proposition 2 shows that if the buyer’s demand function is concave, then the seller voluntarily dis-

closes more evidence to the buyer when their motives are hidden. The intuition is that under hidden

motives some selective information disclosure allows them to steer sales from low- to high-profitability

objects. And indeed in order to effectively steer sales, the seller must disclose some information. If oth-

erwise the seller’s motives are revealed to the buyer, such steering through selective disclosure becomes

impossible; and instead the seller optimally conceals all information so as to maximize the overall prob-

ability that an object (of any profitability) is sold. The opposite result holds when the buyer’s demand

function is convex; and therefore transparency policies are effective in such demand environment.2 In

terms of a regulatory takeaway, Proposition 2 argues that the effectiveness of a transparency policy can

depend on the curvature of the buyer’s demand function, highlighting that there is no “one size fits all”

policy to optimally regulate advice markets. Rather, it is important to fit the regulation to specific fea-

tures of each market. Using the interpretation introduced in Section 2.1, which relates the curvature of

the buyer’s demand function to the degree of competition in the relevant market, we learn that mandating

transparency is an effective policy in very competitive markets, but may not be so in markets where the

buyer does not have many alternatives to the object being offered by the seller.

While Proposition 2 compares optimal disclosure policies with and without a mandated transparency

regulation in cases where the buyer’s demand function is convex or concave, it is silent about the effec-

tiveness of such regulation when the demand function has other shapes. Propositions 3 and 4 provide

complementary results regarding more general specifications for the buyer’s demand function. Specifi-

cally, Proposition 3 relates the local curvature of the demand function to a local increase or decrease in

disclosure due to the regulation. And Proposition 4 shows that, when the seller’s motives are hidden,

their ability to steer the buyer leads them to increase the disclosure of “good news” when the object’s

sale is highly profitable and of “bad news” for less profitable objects.

In section 5, I examine two versions of the model, in which I vary the communication protocol

relative to the “disclosure with commitment” benchmark. First, I consider a variation in which the

seller makes disclosure choices without commitment. That is, they first observe the realization of the

signal regarding the object’s value, as well as the object’s profitability, and only then choose whether

to disclose the evidence to the buyer. The main observation is that transparency policies are always

effective in such an environment, independently of the shape of the buyer’s demand function. This result

is in line with an informal intuition that is often behind the introduction of transparency policies, namely

that if an advisee knows the intention behind the information they receive, then they can take the advice
2If the demand function is convex and the seller has hidden motives, then they selectively conceal information from the

buyer (bad news about high-profitability objects and good news about low-profitability objects), so as to steer the buyer from
low- to high-profitability sales. If the seller’s motives are revealed by the mandatory transparency policy, then steering through
selective concealment becomes impossible; and instead the seller optimally discloses all information so as to maximize the
overall probability that an object (of any profitability) is sold.
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with a “healthy skepticism” which incentivizes the advisor to provide informative advice. Although this

intuition is justified by the no commitment protocol, there are reasons (such as reputation-building in

repeated interactions) why a degree of “commitment” exists in the relationship between the advisor and

the advisee. In that light, the current paper shows that if there is some degree of commitment in that

relationship, then transparency of the advisor’s motives is not always an effective or sufficient method to

regulate the advice market. Finally, in Section 5.2, I briefly comment on a variation in which the seller

can commit to signaling structures more general than simple disclosure policies.

1.1 Related Literature

This paper contributes to the literature on disclosure of verifiable information, started with Grossman

(1981) and Milgrom (1981). For a survey on that literature, see Milgrom (2008). In particular, in my

model the sender uses “simple evidence” as in Dye (1985) and Jung and Kwon (1988), in which a piece of

verifiable “evidence” is either entirely disclosed to the receiver or concealed. My model mainly departs

from that literature by considering a disclosure problem where the sender has hidden motives, and can

commit to a disclosure rule prior to the realization of the evidence.

In assuming that the sender can commit ex-ante to a signaling technology, my paper relates to the

large literature on information design mainly stemming from Kamenica and Gentzkow (2011) and Rayo

and Segal (2010). My paper, like Rayo and Segal’s (2010) work, departs from most of that literature in

that it considers a problem of multidimensional information design. And it differs from Rayo and Segal

(2010) both because I consider a disclosure communication protocol, which allows me to characterize

optimal policies when the buyer’s demand function is not linear,3 and because I study the introduction of

policies that make the seller’s motives transparent.4

Also within information design, my paper contributes to a growing literature studying constrained

information design. These are problems where the sender is subject to additional constraints, beyond

Bayesian plausibility, when choosing a signal structure. For example, Mensch (2021) and Onuchic r©
Ray (2022) consider monotonicity constraints. See Doval and Skreta (2024) and references therein for

other examples. This paper considers a sender who is constrained to disclosure strategies.

Some previous literature studies environments with endogenous information acquisition, and argues

that policies that ostensibly improve information disclosure can actually depress information acquisition

and decrease the sender’s informativeness. Matthews and Postlewaite (1985) argue that by imposing that

the seller disclose any evidence they may have about the quality of an object, a regulator can remove their

incentives to test the object’s quality in the first place. Libgober (2022) shows that a receiver may prefer

to commit to not knowing some dimensions of an experiment produced by a sender, so as to incentivize
3Most of Rayo and Segal’s (2010) characterization results apply to the linear specification. With nonlinear demand func-

tions, the optimal disclosure rule in my model sometimes “pools ordered prospects” – in Rayo and Segal’s (2010) language,
ordered prospects are two objects whose values and profitabilities are ordered in the same way. For an example, see the optimal
disclosure rule depicted in the right panel of Figure 1. One of Rayo and Segal’s (2010) main characterization results is that, in
the linear benchmark, optimal signals never pool ordered prospects.

4The term “transparent motives” was coined by Lipnowski and Ravid (2020) to refer to the sender’s preferences being
state-independent. In my model, under mandated transparency, the seller acts as if they have transparent motives, in that sense.
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information acquisition by a sender. Kartik, Lee and Suen (2017) show that an advisee may prefer to

solicit advice from just one biased expert even when others (of equal or opposite bias) are available,

because in the presence of more advisors, each individual expert free rides on the information acquired

by the other experts. Che and Kartik (2009) study an environment in which a sender and receiver share

the same preferences, buthold different priors over the distribution of states. They show that the sender

may invest more in acquiring information when the disagreement between their priors is larger.5 In

contrast with this literature, my paper argues that mandated transparency of the seller’s motives affect

the advisor’s incentives to reveal exogenous information to the buyer.

Finally, this paper also relates to previous work studying cheap talk models in which the sender

has hidden motives. For example, Sobel (1985), Morris (2001), and Morgan and Stocken (2003), study

environments with cheap talk communication in which the receiver does not know whether the sender’s

preferences are aligned with their own. My paper is most related to Li and Madarasz (2008), which

studies a version of Crawford and Sobel’s (1982) cheap talk environment, with the additional assumption

that the receiver does not know the size or direction of the sender’s bias. Like me, Li and Madarasz

(2008) ask whether instituting a policy that mandates the transparency of the sender’s motives (their

bias in that case) is gainful for the receiver. Also like me, they find that such mandated transparency

policy may be ineffective. Our papers differ in that we consider distinct communication protocols, and

highlight different features of the environment that determine the effectiveness of mandated transparency

regulation (the curvature of the buyer’s demand function, and the degree of commitment in the advisor-

advisee relationship, in my case).

2 Environment

A seller wishes to sell an object to a buyer who does not know their value for the object, or how profitable

the object’s sale is to the seller. The object’s value to the buyer, denoted x ∈ X = [xmin, xmax], and

its profitability to the seller, denoted y ∈ Y = [ymin, ymax], with ymin > 0, are drawn from a joint

distribution commonly known by seller and buyer.

Before the buyer decides whether to purchase the object, the seller can disclose to them a signal

conveying some information about the object’s value (see below for details on the communication pro-

tocol). After observing any conveyed information, the buyer forms a Bayesian posterior belief about

the object’s value, with some expected value x̂ ∈ X . Given their posterior x̂ about the object’s value,

the buyer purchases the object with probability p(x̂), where p : X → [0, 1] is a strictly increasing and

continuously differentiable “demand function.” If the object is purchased, the seller receives a payoff

equal to the object’s profitability, y. Otherwise, the seller’s payoff is 0.

5See also Shishkin (2023) and DeMarzo, Kremer, and Skrzypacz (2019) about information acquisition by the sender in a
Dye (1985) framework. And see Szalay (2005) and Ball and Gao (2024) about information acquisition by a biased agent in
a delegation context. An earlier version of this paper also shows that the introduction of a transparency policy can hinder the
seller’s incentives to acquire information about the objects value; and therefore also affect the informativeness of their advice
through that channel.
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Information Disclosure Protocol. The seller has access to a signal that conveys information about the

object’s value. The signal, π : X × Y → ∆M, is a measurable function mapping the object’s value and

profitability to a distribution of messages in a measurable set of possible messages,M. Given signal π,

for each signal realization m ∈M, x̂(m) = E(x|m) is the implied Bayesian posterior expected value of

the object. I assume that, given a signal realization m, knowing the profitability of the object conveys no

additional information about the object’s value; that is, E(x|m, y) = E(x|m) = x̂(m).6 In other words,

if an agent observes message m from signal π, they interpret it as “the object’s expected value is x̂(m),”

independently of their belief about the object’s profitability.

Given this independence, I refer to a signal realization and to the posterior mean it induces inter-

changeably; and equate the signal π with its induced distribution of posterior means. Formally, let F be

the joint distribution over X ×Y of signal realizations and the object’s profitability, implied by the prior

distribution of values and profitabilities and by the signal π. Denote by FY the marginal profitability dis-

tribution, and by FX|y the distribution signal realizations conditional on a profitability y ∈ Y . I assume

that distributions FY and FX|y, for each y ∈ Y , have strictly positive densities fY and fX|y for each y.

At an initial stage, the seller commits to a rule to disclose signal realizations to the buyer. A disclosure

rule is a measurable map from a signal realization and the object’s profitability into a probability that the

realization is disclosed, d : X ×Y → [0, 1]. Note that the disclosure decision depends both on the signal

realization and on the profitability of the object, so in practice the seller commits to rules to disclose

signal realizations, which are conditional on the object’s profitability.

If signal realization x̂ is disclosed, the buyer’s posterior mean after observing it is, by definition, ex-

actly x̂. If otherwise the signal realization is not disclosed, the buyer’s posterior mean is computed using

Bayes’ Rule, accounting for the disclosure rule. Formally, if
∫
Y
∫
X [1− d(x, y)] dFX|y(x)dFY (y) > 0,7

xND =

∫
Y
∫
X x (1− d(x, y)) dFX|y(x)dFY (y)∫

Y
∫
X (1− d(x, y)) dFX|y(x)dFY (y)

, (1)

which is the expected value conditional on non-disclosure. The average object profitability given that a

realization is not disclosed is analogously given by

yND =

∫
Y
∫
X y (1− d(x, y)) dFX|y(x)dFY (y)∫

Y
∫
X (1− d(x, y)) dFX|y(x)dFY (y)

.

2.1 Micro-Foundations for the “Demand Function” p

Throughout this paper, I regard the buyer as a passive agent, a “receiver” who sees (or does not see) in-

formation about the object, forms a belief about the object’s expected value, and buys it or not according

to some exogenously given “demand function” p. A possible micro-foundation for this demand function,
6This condition holds, for example, if the object’s value and its profitability are independent and the signal π is independent

of the object’s profitability. Alternatively, it holds if the signal fully reveal’s the object’s value, in which case no additional
information can be conveyed by the knowledge of the object’s profitability.

7Otherwise, non-disclosure is “off-path,” and we fix xND at some value in X .
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which follows the description in Rayo and Segal (2010), is given below.

Privately-known outside option. A risk-neutral buyer chooses between acquiring the object being sold

by the seller or taking an outside option. An example of an outside option would be of buying another

object somewhere else, or refraining from buying altogether. The value of the buyer’s outside option

xo is private information, distributed according to Fo. Once the buyer sees all the provided information

about the object’s value, and forms belief x̂, they purchase the object if x̂ > xo and do not purchase it

otherwise. From the seller’s perspective, a purchase then happens with probability Fo(x̂), the probability

that the expected value of the object is greater than that of the outside option. In this case, the “demand

function” p coincides with the distribution of outside option values Fo.8 The assumption that p is in-

creasing and continuously differentiable requires then that the cdf Fo be continuously differentiable.

Competing sellers. A different micro-foundation, in the spirit of Hwang, Kim, and Boleslavsky (2023),

describes a buyer who has access to the object being offered by the seller and to various potential outside

options, perhaps referring to objects being sold by alternative sellers. The value of the product sold

by each of the outside sellers is unknown to the inside seller, but each is distributed according to Fo,

and value draws are independent across inside and each of the outside objects. Therefore, if there are

n outside sellers, the best outside option available to the buyer, max(xo) is distributed according to

max(xo) ∼ (Fo)
n. The buyer purchases the inside object then if the expected value of the inside

object, x̂, is greater than max(xo). This happens with probability (Fo)
n(x̂). In this case, the “demand

function” p therefore coincides with (Fo)
n. Again, the assumption that p is increasing and continuously

differentiable requires then that the cdf Fo be continuously differentiable.

Note moreover, that an increase in competitiveness, in the sense of an increase in the number of

competitors n, maps into an increase in the convexity of the demand function. Formally, if n′ > n,

then demand function p′ = (Fo)
n′ is more convex than demand function p = (Fo)

n, because the former

function is a strictly increasing and convex transformation of the latter. And moreover, if n is large

enough, then the demand function p = (Fo)
n is a convex function in the entirety of its support.

The results stated in the paper show that the characterization of optimal disclosure rules, and policy

implications in terms of transparency mandates, depend on the curvature of the demand function. Once

these results are stated, I refer back to this interpretation of the convexity of the demand function as

related to the competitiveness in the market to which the seller belongs.

2.2 Financial Advisors with Hidden Motives

The features of the model just introduced can be interpreted in the context of a brokerage company who

provides financial advice to investors, but also receives commissions for the sale of financial products.
8Alternatively, one may think that the seller communicates with a population of possible buyers, and each buyer decides

between making a purchase from the seller and taking their own private outside option. In that case, Fo is the distribution of
outside options in that population of buyers, and p = Fo describes the amount of sales to be made by the seller when they
induce a certain posterior belief about the object’s value on the population of buyers.
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In that scenario, clients understand that brokers receive sales commissions from some product sales, and

therefore wish to sell products often. However, in each instance when the advisor suggests a financial

product, the client may not know the exact size of the commissions on that particular product (and hence

the advisor’s motives are hidden).

Investors commonly receive advice in the form of reports about financial products. In addition to

publicly available data about companies and industries, a report on a particular product includes forecasts

and evaluations produced by in-house research teams. In line with the model, a research report about a

financial product is a piece of evidence which induces on the investor who sees it some perception of

the product’s value. Most research departments are subject to “Chinese wall” regulations which institute

a separation between research teams and client-facing sales teams within the same institution. These

regulations aim to ensure that the analyses produced by a research teams are not biased by the companies’

profit-seeking interests. Accordingly, in the model, the evidence about the object’s value is not biased.

Rather, the seller can only affect the buyer’s behavior by selectively choosing which pieces of (unbiased)

evidence to reveal and which to strategically conceal.

The exercise in section 4 studies a regulation which reveals the seller’s motives (the profitability of

the object) to the buyer. Because investors often rely on professional advice when making investment

decisions, financial advisory is a highly regulated field. (And has become increasingly so since the Great

Recession and the institution of the Dodd-Frank Act.) In the United States, the regulation varies across

states, and also across categories within the field – for example, financial advisors and insurance agents

are often subject to more stringent regulation than broker-dealers, who often also provide advice. Spe-

cific details notwithstanding, much of the regulation focuses on making the interests of financial advisors

transparent to investors who consult them. For example, they might be required to disclose other sources

of compensation received beyond service fees, professional affiliations with another broker-dealer or se-

curities issuer, and other potential or existing conflicts of interest. Other types of regulation also forbid

advisors from receiving some types of compensation. For instance, the UK and the Netherlands have

altogether imposed bans on commission payments for some types of financial advisors.

Commitment to Information Disclosure. An important feature of the model is that the seller can com-

mit to an evidence-disclosure rule prior to observing the evidence realization. A common interpretation

in the information design literature sees the commitment assumption as a stand in for a sender’s desire to

build and sustain credibility with a receiver in a game of repeated interaction. Think of a circumstance

where a financial advisor repeatedly interacts with an investor, informing them about products’ values

over a long time. And suppose that this investor follows the advisor’s recommendation, but also sees the

outcome of their investment decisions — so they can tell, to some extent, whether the advice was sound.

Over time, the investor can “punish” unsatisfactory advice from the seller with future incredulity – maybe

by not following their recommendation, maybe by seeking another advisor. Through that mechanism, in

the repeated game, the advisor’s optimal disclosure strategy would be such that the buyer’s interpreta-

tion of a “no disclosure” message coincides with the interpretation yielded in the one-shot game under
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the commitment assumption. A version of this argument is made formally made by Best and Quigley

(2023), and a similar argument linking commitment and reputation is provided by Mathevet, Pearce and

Stacchetti (2022).9 The literature also provides other justifications for the “commitment assumption” —

for example, Deb, Pai, and Said (2023) show that the seller could implement the commitment signaling

strategy by communicating with the buyer through an informed third party. In that case, commitment to

an employment contract with that agent is a stand in for commitment to the communication strategy.

Of course, commitment is not an assumption that perfectly reflects the interaction between an in-

vestor and their financial advisor. But neither is the assumption that the advisor has no commitment at all

— truth is somewhere in between. The analysis in this paper highlights that optimal disclosure and the

effectiveness of transparency policies differs significantly under a commitment protocol, as compared to

a protocol with no commitment (discussed in section 5). Consequently, one of the contributions of this

paper is to refine our understanding of effective regulation in advice markets by highlighting how they

vary depending on the degree of commitment in the advisor-advisee relation.

Literature on Financial Advisors with Hidden Motives. In a series of papers in 2012, Inderst and Ot-

taviani (2012.1, 2012.2, 2012.3) propose models of brokers and financial advisors compensated through

commissions. Competing sellers offer commissions to an advisor, knowing that they will steer business

to sellers that offer higher compensation. The authors show that biased commissioned advisors may

benefit welfare by steering business to high-commission firms who are also more cost efficient at the ex-

pense of providing information to buyers. In my model, the sender’s distribution of profitability is given,

and I show that hidden motives can improve welfare precisely by increasing the amount of information

provided to the consumer.

There is also a large literature that studies the provision of information by Credit Rating Agencies

that are financed by fees paid by issuers of financial products. Some key papers in this literature are

Bolton, Freixas, and Shapiro (2012), Opp, Opp and Harris (2013), Bar-Isaac and Shapiro (2012) and

Skreta and Veldkamp (2009). In this literature, the CRA receives payments equally from all issuers of

financial products. In my model, the main concern is that the advisor benefits some products over others

because they have different profitabilities.
9Best and Quigley (2023) find that reputation in a repeated interaction between sender and receiver is generally not a

substitute for commitment if the sender’s optimal strategy (with commitment) involves mixing between messages after some
realization of the state. In that case, for the sender to be willing to randomize (in the repeated game), the sender must be made
indifferent between messages; Best and Quigley (2023) show that to implement such indifference, a non-negligible amount
of continuation surplus must be “burnt,” even in the patient limit. However, in the disclosure context studied in this paper,
we will see that the sender’s optimal strategy does not involve randomization, and therefore reputation can be a substitute for
commitment.

Further, note that in the “repeated game” version of the current environment with hidden motives, it would not be necessary
for the receiver to observe the profitability of the object in order to establish the equivalence between reputation and commit-
ment. Because the buyer only cares about the object’s value in this context, it would suffice for them to observe the object’s
value in order to “punish” unsatisfactory advice.
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3 Optimal Disclosure

Suppose the seller commits to a disclosure rule d. The probability that the object is sold, conditional on

its profitability being y is

P (y, d) =

∫
X

[
d(x, y)p(x) + (1− d(x, y))p(xND)

]
dFX|y(x). (2)

To understand (2), first remember that FX|y is the distribution of signal realizations given that the object

has profitability y. Suppose a signal realization x is disclosed, which happens with probability d(x, y).

Then the object is sold with probability p(x), which is reflected in the first term inside the integral of (2).

As for the second term, with probability 1 − d(x, y) the realization x is not disclosed. In that case, the

object is sold with probability p(xND), where xND is as given in (1).

The seller’s expected payoff from committing to disclosure rule d is then

Π(d) = E [yP (y, d)] = E(y)E [P (y, d)] + Cov [y, P (y, d)] . (3)

In (3), I split the seller’s payoff into two terms, expressing that the seller’s objective can be seen as

twofold. According to the first term, the seller wishes to maximize the overall expected probability of

sale, which is multiplied by the average profitability. Per the second term, they seek to maximize the

covariance between the object’s profitability and its probability of sale. This covariance term reflects

the seller’s desire to steer the buyer from purchasing low-profitability objects to purchasing those with

high profitability. These two objectives are sometimes at odds, and the characterization provided below

illustrates how optimal disclosure balances the two goals.

The first result, Theorem 1, provides a threshold characterization of disclosure rules that maximize

the seller’s value. There is a threshold value x̄ such that each signal realization is classified as either

good news, if x is larger than x̄, or bad news, if x < x̄. For a good news realization x > x̄, there

is a profitability threshold ȳ(x) such that a signal realization is disclosed if and only if the object’s

profitability is above that threshold. Conversely, each bad news realization x < x̄ is disclosed if and only

if the object’s profitability is below the threshold ȳ(x).

Theorem 1. An optimal disclosure rule exists and every optimal rule d∗ has a threshold structure: There

is a threshold value x̄ ∈ X and a threshold profitability ȳ : X → Y such that d∗ almost everywhere

satisfies d∗(x, y) ∈ {0, 1} and

d∗(x, y) = 1⇔ (x− x̄)(y − ȳ(x)) > 0. (4)

The threshold value satisfies x̄ = xND, and, for x 6= xND, the threshold profitability ȳ(x) satisfies

ȳ(x) = yND
[
p′(xND)(xND − x)

p(xND)− p(x)

]
. (5)
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Figure 2: Building disclosure rule d̂ from disclosure rule d: in each panel, the colored areas representing zones of
no disclosure and the white areas representing zones of disclosure. The left-hand side panel illustrates a possible
disclosure rule d that does not have a “threshold structure.” The right-hand side panel depicts a disclosure rule d̂,
which has a threshold structure, and is derived from d according to (6), (7), and (8).

A complete proof of Theorem 1, including the characterization of the threshold profitability function

ȳ(·) is provided in the Appendix. I now provide an intuitive discussion, arguing that any disclosure

rule which leads to no disclosure with positive probability and does not satisfy the threshold structure

described in (4) can be improved upon by a rule that does satisfy (4). Start with one such disclosure

rule d according to which no disclosure happens with positive probability, and which does not satisfy the

threshold structure. (For example, the disclosure rule depicted in the left-hand side panel of Figure2.)

Let xND be its implied non-disclosure posterior mean. Define then an alternative rule, d̂, that discloses

each realization x with the same probability as d, but has a threshold structure. That is, if x 6 xND, let

d̂(x, y) =

1, if y 6 ŷ(x)

0, if y > ŷ(x)
(6)

and if x > xND, let

d̂(x, y) =

0, if y < ŷ(x)

1, if y > ŷ(x)
(7)

where the thresholds ŷ are calibrated such that, for each realization x,∫
Y
d̂(x, y)dFY |x(y) =

∫
Y
d(x, y)dFY |x(y), (8)

where FY |x is the profitability distribution conditional on a signal realization x. The right-hand side
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panel of Figure 2 illustrates the “improvement” d̂ derived from d on the left-hand side panel, according

to (6), (7), and (8). Condition (8) implies that d and d̂ induce the same xND, and so d̂ satisfies (4), with

x̄ = xND.

By moving from d to d̂, the seller shifts the disclosure probability of bad news to low profitability

objects and of good news to high profitability objects, while maintaining the distribution of posterior

mean values that is induced on the buyer. It is easy to see (and I argue formally in the Appendix), that:

Claim 1. d and d̂ produce the same overall probability of sale, because the distribution of posterior mean

values is unchanged; and Claim 2. d̂ induces a strictly larger covariance between sales and profitability

than d, because the change increases the probability that very profitable objects are sold, and decreases

that probability for less profitable objects. These facts imply that d̂ yields a strictly larger expected seller

payoff than d, as desired.

The value and profitability thresholds described in Theorem 1 partition the value-profitability space

into four “quadrants” — see, for example, Figures 1 and 3, which illustrate the quadrants defined by the

optimal disclosure rules. The first and third quadrants represent regions where the seller and buyer have

aligned interests, either because both value and profitability are high or because both value and prof-

itability are low. Signal realizations in these “alignment” regions are optimally disclosed to the buyer.

Conversely, the second and fourth quadrants represent areas of misalignment between advisor and ad-

visee, and therefore these signal realizations are optimally concealed.

Interior vs. Corner Optimal Disclosure Rules. Theorem 1 shows that an optimal disclosure rule is

such that, for some x̂ ∈ X and ŷ ∈ Y ,

(x− x̂)(y − ȳ(x)) > 0⇒ dx̂,ŷ(x, y) = 1, (x− x̄)(y − ȳ(x)) < 0⇒ dx̂,ŷ(x, y) = 0,

where ȳ(x) = ŷ

[
p′(x̂)(x̂− x)

p(x̂)− p(x)

]
.

And the following system of two equations must hold:x̂ = E [x|no disclosure region implied by dx̂,ŷ]

ŷ = E [y|no disclosure region implied by dx̂,ŷ]
(9)

But note that, if x̂ = inf(X ) and ŷ = inf(Y), or x̂ = sup(X ) and ŷ = sup(Y), it is possible for the no

disclosure region implied by dx̂,ŷ to be empty.10 In that case, the expected values on the right hand side

of the equations in (9) are not defined by Bayesian updating. For convenience, I take the stance that the

buyer’s “off-path” beliefs of no disclosure are such that (9) is vacuously satisfied. This means that, if the

no disclosure set is empty at one or both corners — x̂ = inf(X ) and ŷ = inf(Y), or x̂ = sup(X ) and

ŷ = sup(Y) — then these “corner solutions” with full disclosure are candidate optimal disclosure rules.

10For any other “corner cases,” in which x̂ ∈ {inf(X ), sup(X )} or ŷ ∈ {inf(Y), sup(Y)}, the implied disclosure rule dx̂,ŷ
is necessarily such that no disclosure happens with positive probability. In the proof of Lemma 1, I argue that these corner
disclosure rules cannot be solutions to the seller’s problem, as they do not satisfy system (9).
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Lemma 1 and Proposition 1 below delineate conditions so that the optimal disclosure rule does not

involve full disclosure and does not correspond to one of the two potential corner solutions. Specifically,

Lemma 1 shows that if system (9) has an interior solution, then such solution must imply a disclosure

rule that yields strictly higher payoff to the seller than full disclosure.

Next, Proposition 1 proposes three conditions that guarantee that system (9) has an interior solution.

The first condition guarantees that, for any x̂ ∈ X and ŷ ∈ Y , the implied disclosure rule dx̂,ŷ induces

no disclosure with positive probability; in that case, I show that (9) must have an interior solution. This

first condition is satisfied, for example, if the demand function p is strictly concave; but it can also hold

for non-concave demand functions. The second condition states that (9) also has an interior solution if

the demand function p is affine. Finally, condition 3 shows that the same holds if p is “close enough” to

being an affine function; specifically, this condition guarantees that the optimal disclosure rule is interior

for strictly convex demand functions that are “not too convex.” (In section 3.2.1, I work out an example

where the demand function p is convex and the optimal disclosure rule is interior.)

Lemma 1. If system (9) has an interior solution, with x̂ ∈ int(X ) and ŷ ∈ int(Y), then the optimal

disclosure rule is interior and such that no disclosure happens with positive probability.

Proposition 1. aa

1. If there exist x, x′ ∈ X such that

p′ (inf(X )) (x− inf(X ))

p(x)− p (inf(X ))
> 1 and

p′ (sup(X )) (x′ − sup(X ))

p(x′)− p (sup(X ))
< 1,

then the optimal disclosure rule is interior and no disclosure happens with positive probability.

2. If p is an affine function, then the optimal disclosure rule is interior and no disclosure happens

with positive probability.

3. If p = αp1 + (1 − α)p2, where p1 is an affine function, then there exists ᾱ ∈ (0, 1) such that if

α > ᾱ, the optimal disclosure rule is interior and no disclosure happens with positive probability.

Steering and Credibility of Optimal Disclosure The characterization of optimal disclosure rules high-

lights the steering logic behind optimal advice in real financial advice markets. On the one hand, advisors

understand that withholding evidence makes advisor-receivers skeptical — the literature on evidence dis-

closure has empirically documented the link between non-disclosure and skepticism. On the other hand,

by committing to a threshold disclosure rule, an advisor can induce an ambiguous meaning on the ad-

visee’s skepticism: they cannot fully disentangle whether “no news” means “bad news about the object’s

value (skepticism about the object’s quality), or whether “no news” means “the object’s sale is not prof-

itable to the seller” (skepticism about the object’s profitability). By creating such ambiguity, the advisor

can profitably steer the advisee. Indeed, it is well documented in financial advice markets that brokers
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conceal bad news about companies in which they have financial interests and that financial advisors’

recommendations favor products with high commissions.11

In this model, steering is made possible because the seller is able to commit to a disclosure rule, and

can therefore affect the buyer’s interpretation of “no disclosure” by pooling together high-profitability-

low-value realizations with low-profitability-high-value realizations. But is it reasonable to expect such

commitment power from the advisor? As mentioned in section 2.2, commitment can be seen as a stand-in

for reputation in a repeated interaction between advisor and advisee. Beyond this argument, a recent pa-

per by Lin and Liu (2023) proposes a notion of credibility for information design problems: A disclosure

policy is credible if the sender cannot profit from tampering with her messages while keeping the mes-

sage distribution unchanged. Their reasoning is that if a sender “deviates” from an information policy in

a way that keeps the marginal probability of sending each message unchanged, then that deviation would

be “undetectable”; and if a policy is such that there are “undetectable” deviations that would benefit the

sender, then such policy is not credible.

According to this definition, the optimal disclosure rules described in Theorem 1 are credible. To

see, note that any disclosure rule other than the optimal rule as given in Theorem 1, but which induces

that same marginal distribution over messages, must invariably swap the disclosure of a realization (x, y)

and a different realization (x, y′); that is, two states with the same evidence realization x. But as per the

argument in the proof of Theorem 1, if one such “undetectable swap” were available and were indeed

profitable, then the starting disclosure rule must not have been optimal in the first place.

3.1 Linear Demand.

Sections 3.1 and 3.2 now provide further characterization of optimal disclosure under different assump-

tions about the buyer’s “demand function” p. Corollary 1 applies Theorem 1 when p is affine.

Corollary 1. If the demand function p is affine, then the thresholds defining an optimal disclosure rule

satisfy x̄ = xND ∈ int (X ) and ȳ(x) = yND ∈ int (Y) for all x ∈ X .

When the demand function p faced by the seller is affine, all disclosure rules yield the same overall

probability of sale. That is, for any two disclosure rules d and d′, E [P (y, d)] = E [P (y, d′)]. This fact is

an implication of the martingale property of posterior beliefs: we know that the expected posterior belief

of the buyer about the value of the object has to equal the buyer’s prior belief about the object’s value.

Because the probability of sale is an affine function of such posterior belief, the expected probability of

sale has to equal the “ex-ante probability fo sale.”

Consequently, in choosing a disclosure policy, there is no scope for the seller to increase or decrease

the overall probability that the buyer purchases the object. Rather, the seller solely distributes this con-

stant sale probability between high and low profitability objects. In order to optimally steer sales from

low- to high-profitability objects, the seller uses a constant threshold ȳ(x) = yND, thereby effectively
11See, for example, Anagol, Cole and Sarkar (2017) and Eckardt and Rathke-Doppner (2010) about insurance brokers;

Chalmers and Reuter (2020) on retirement plans; Inderst and Ottaviani (2012.2) on general financial advice. For a survey on
quality disclosure and certification, see Dranove and Jin (2010).
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Figure 3: Left-hand panel: optimal disclosure rule when p is affine. The gray areas represent signal realizations
that are optimally concealed by the seller, and white areas are optimally disclosed. The right-hand panel illustrates
that, in this case, the object is classified as either a high-profitability object or a low-profitability object. For
the former, signal realizations are disclosed if and only if they are “good news,” whereas for the latter signal
realizations are disclosed if and only if they represent “bad news.”

assigning the object to one of two classes high profitability, with y > yND, and low profitability, with

y < yND. Such an optimal disclosure rule is depicted in Figure 3; its right-hand panel illustrates that,

for high-profitability objects, signal realizations are disclosed if and only if they represent “good news,”

while the opposite is true for low-profitability objects.

3.2 Nonlinear Demand.

If the demand function p is not affine, then the amount of information disclosed by the seller impacts the

overall probability of sale. Observation 1 below states that increasing the amount of information about

the object’s value that is disclosed to the buyer increases the overall probability that the object is sold if

the demand function is convex, and decreases it if the demand function is concave. To formally state this

result, we say that a disclosure rule d has more disclosure than a disclosure rule d′ if d(x, y) > d′(x, y)

for all x ∈ X and y ∈ Y; strictly so if this inequality is strict for a subset of X ×Y with positive measure.

Observation 1. Suppose d has more disclosure than d′. Then if p is strictly convex (concave), d yields a

higher (lower) sale probability than d′; and strictly so if d has strictly more disclosure than d′.

With a nonlinear demand function, the seller transfers sales from low- to high-profitability objects at

the expense of the total probability that the object is sold. If the seller faces a convex demand function,

he wishes to disclose more information in order to maximize the sale probability; but maximizing the

covariance between profitability and probability of sale requires the concealment of some realizations.

Conversely, if the demand function is concave, overall sale probability increases when information is

concealed from the buyer, but to improve the covariance between sales and profitability, the seller must

disclose some signal realizations. The following corollary describes features of optimal disclosure in

these cases.
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Corollary 2. If p is strictly convex (concave), an optimal disclosure rule has a strictly decreasing (in-

creasing) profitability threshold function ȳ(x), satisfying ȳ(xND) = yND.

An optimal disclosure rule when p is strictly convex is represented in the left panel of Figure 1.

Unlike in the linear demand case, some “very bad news” may be optimally disclosed even when the

object is highly profitable; and, conversely, some “very good news” are disclosed to the receiver even

when the object has low profitability. This feature is derived from the tension between the desire to

maximize the probability of sale and to covary the probability of sales with profitability. In the opposite

case, where p is strictly concave, due to an analogous tension, the sender optimally conceals some “very

bad news” about low-profitability objects and some “very good news” about high-profitability objects.

This is depicted in the right panel of Figure 1.

For illustration, I now provide two worked-out examples — corresponding to the cases depicted in

Figure 1 — and fully describe the respective optimal disclosure rules.

3.2.1 Example: Optimal Disclosure under Convex Demand Function

Suppose an object’s value and it’s profitability are independently distributed, each distributed according

to the uniform distributionU [0, 1]. Moreover, signal realizations are fully revealing, so that FY = U [0, 1]

and FX|y = U [0, 1] for each y ∈ [0, 1]. Further, let the demand function be given by p(x) = x2.

From Theorem 1, we know that the thresholds defining the optimal disclosure rule should satisfy:

x̄ = xND, and

ȳ(x) = yND
[

2xND(xND − x)

(xND)2 − x

]
= yND

[
2xND

xND + x

]
.

Moreover, given these thresholds, xND and yND must indeed correspond to the Bayesian posteriors

implied by no disclosure: xND = E(x|no disclosure), and yND = E(y|no disclosure). Numerically, I

find that there is a unique pair (xND, yND) ∈ (0, 1)2 that satisfies these conditions. The pair is given by

xND = 0.5824 and yND = 0.5098.

Because there is a unique such pair, we know that it must correspond to the thresholds in the optimal

disclosure rule. For an illustration, we find that the expected payoff to the seller under full disclosure

equals 1/6. The expected payoff under no disclosure is 1/8. And the expected payoff under the optimal

disclosure rule just described equals 0.1885. (All the relevant calculations, including details on the

numerical exercise, are available in the Appendix.)

3.2.2 Example: Optimal Disclosure under Concave Demand Function

Again, suppose the object’s value and it’s profitability are independently distributed, each distributed

according to the uniform distribution U [0, 1]. Moreover, signal realizations are fully revealing, so that
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FY = U [0, 1] and FX|y = U [0, 1] for each y ∈ [0, 1]. But now consider the following concave demand

function: p(x) = 2x− x2.

In this case, the thresholds defining the optimal disclosure rule should satisfy:

x̄ = xND, and

ȳ(x) = yND
[

(2− 2xND)(xND − x)

2xND − (xND)2 − (2x− x2)

]
= yND

[
2(1− xND)

2− xND − x

]
.

Again, it must be that xND = E(x|no disclosure), and yND = E(y|no disclosure). Numerically,

I find that the is a unique pair (xND, yND) ∈ (0, 1)2 satisfying these conditions, and therefore corre-

sponding to the thresholds in the optimal disclosure rule, is

xND = 0.5397 and yND = 0.5402.

For an illustration, I find that the expected payoff to the seller under full disclosure equals 1/3. The

expected payoff under no disclosure is 3/8. And the expected payoff under the optimal disclosure rule

just described equals 0.3907. (Again, all the relevant calculations, including details on the numerical

exercise, are available in the Appendix.)

4 Mandated Transparency Policy

Consider a policy intervention that makes the motives of the seller transparent to the buyer. The policy is

a transparency mandate imposed on the seller by a regulator, forcing them to always reveal their interest

in the object’s sale. Such transparency policies are the most common regulations used in advice markets;

for example, regulators require financial advisors to disclose their commission structures (as mentioned

in section 2.2), and platforms such as Instagram require influencers to tag “sponsored posts.”

In the model, the policy imposes that when the buyer observes the seller’s “advice” — either the

disclosed signal realization or non-disclosure — they also perfectly observe how profitable the object’s

sale is to the seller. Naturally, anticipating that the buyer will see the profitability of the object, the seller

optimally uses disclosure strategy which differs from the payoff maximizing disclosure rule without

transparency. Indeed, with transparency, the seller’s problem becomes continuum of separate disclosure

problems, one for each profitability. This fact is stated in Theorem 2, along with a characterization of

optimal disclosure under mandated transparency.

Theorem 2. With mandated transparency, the seller chooses for each y ∈ Y a policy d(·, y) : X → [0, 1]

to maximize P (y, d(·, y)), where

P (y, d(·, y)) =

∫
X

[
d(x, y)p(x) + (1− d(x, y))p(xNDy )

]
dFX|y(x)
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and xNDy =

∫
X [1− d(x, y)]xdFX|y(x)∫
X [1− d(x, y)]dFX|y(x)

. (10)

Under mandated transparency, any optimal disclosure rule d∗ almost everywhere satisfies

p(x) > p
(
xNDy

)
+ p′

(
xNDy

) (
x− xNDy

)
⇒ d∗(x, y) = 1, (11)

and p(x) < p
(
xNDy

)
+ p′

(
xNDy

) (
x− xNDy

)
⇒ d∗(x, y) = 0. (12)

Under transparency, the seller cannot use strategic disclosure in order to steer sales across objects

with different profitability levels. Rather, Theorem 2 shows that they separately maximize the probability

that the object with each profitability level gets sold. The optimal disclosure rule may differ across objects

with different profitabilities because FX|y may depend on y, which therefore implies the optimal value

of xNDy — which determines the optimal disclosure rule, as per (11) and (12) — varies with y.

4.1 Curvature of p and the Effectiveness of Mandated Transparency

Proposition 2 below is a direct consequence of Theorem 2, and shows that mandating transparency of the

seller’s motives may increase or decrease the amount of evidence the seller voluntarily discloses to the

buyer, and that this effect depends on the curvature of the buyer’s demand function p.12

Proposition 2. Let d and d′ be optimal disclosure policies to the seller under mandated transparency

and hidden motives, respectively.

1. If p(·) is strictly convex, mandated transparency improves evidence disclosure, that is, d has more
disclosure than d′.

2. If p(·) is strictly concave, mandated transparency harms evidence disclosure, that is, d has less
disclosure than d′.

If the demand function is convex, then the mandated transparency policy increases the set of evidence

pieces that the seller would voluntarily choose to disclose to the buyer. In fact, given that demand

regime, any optimal disclosure policy under mandated transparency involves the voluntary disclosure of

all evidence – so that the optimal d involves full disclosure, regardless of the object’s profitability. To

see this, note that for any value of xNDy , strict convexity of p implies that the condition on the right-hand

side of (11) is satisfied strictly for any x 6= xNDy . An optimal disclosure rule must therefore satisfy

d∗(x, y) = 1 almost everywhere.

12If the demand function is affine, a case that is not contemplated in Proposition 2, then under mandated transparency, the
seller is indifferent between all disclosure rules, including full disclosure and no disclosure. The effect of mandated transparency
on disclosure is therefore indeterminate.
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Conversely, if the demand function is concave, then mandated transparency has the opposite effect

on evidence disclosure: the optimal disclosure policy is for the seller to not disclose any of the realized

evidence. Again, this can be seen directly from (11). Because p is strictly concave, then for any xNDy ,

the condition on the right-hand side of (11) fails for all x 6= xNDy , which implies that almost all signal

realizations are optimally concealed from the buyer.

To evaluate whether transparency is good or bad in terms of the informativeness of the seller’s advice

to the buyer, it is not enough to consider the evidence that is voluntarily disclosed by the seller. Rather,

we must also consider the information that is “involuntarily” conveyed to the buyer directly when they

observe the object’s profitability. Remember that objects with different profitabilities may have differ-

ent value (and evidence) distributions, and therefore some information is conveyed directly through the

mandated transparency of the seller’s motives. To evaluate the overall impact of the policy on the infor-

mativeness of the seller’s advice to the buyer, we consider its impact on the distribution of the buyer’s

beliefs induced by the policy and the seller’s optimal disclosure policy.

Denote the transparency policy by τ ∈ {0, 1}, with τ = 1 indicating the mandated transparency

environment, and τ = 0 the hidden motives environment. Given a disclosure rule d and transparency

policy τ , let FB(·, d, τ) be the distribution of posterior means observed by the buyer.13 We say the pair

(d, τ) is more informative than the pair (d′, τ ′) if FB(·, d, τ) is more informative than FB(·, d′, τ ′) in

the Blackwell order. By evaluating the policy in terms of its implied Blackwell informativeness to the

buyer, I am agnostic as to what the buyer’s objective is, and therefore on what is the “surplus” that the

policy-maker wishes to maximize: the buyer’s value under any decision problem (for which the mean

posterior is a sufficient statistic) is higher under the more Blackwell informative policy.

Corollary 3. .

1. If p(·) is strictly convex, the seller is more informative under mandated transparency.

2. If p(·) is strictly concave, and E[x|y] = E[x] for every y ∈ Y , then the seller is less informative

under mandated transparency.

Proposition 2 and its Corollary 3 show that the effectiveness of mandated transparency as a regulatory

policy depends on the curvature of the demand function p. Returning to the micro-foundations provided

in section 2.1, one possible interpretation of the curvature of the demand function is as a measure of the

competitiveness in the market to which the seller belongs. Specifically, if there are sufficiently many

“competitors” to the considered seller, then the demand function p is convex, and mandated transparency

is an effective policy. Conversely, if competition is not sufficient, then p may be concave, implying
13For a given d and τ , FB(x, d, τ) is equal to∫

Y

∫
[xmin,x)

d(x̂, y)dFX|y(x̂)dFY (y) +

∫
Y

∫
X
(1− d(x̂, y))1

{
xNDy 6 x

}
dFX|y(x̂)dFY (y),

where for every y ∈ Y , xNDy = xND as given in (1) if τ = 0; and xNDy is as defined in (10) if τ = 1.
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that mandated transparency is not a good policy tool. An interpretation is that competition with outside

sellers is a sufficient motivator for the seller to provide information to the buyer — this point is indeed

made by Hwang, Kim and Boleslavsky (2023). But, in case there is lack of competition, allowing sellers

to profitably steer buyers (by keeping their motives hidden) can provide the necessary incentives for the

disclosure of information about the object’s value.

4.2 Local Effects of Mandated Transparency

The results in section 4.1 concern extreme cases where p is strictly concave or strictly convex. “Local

versions” of those results hold, which depend only on the local curvature of the demand function around

the expected value xND. From (10), we know that under mandated transparency, a signal realization x

for an object with profitability y is disclosed if

p(x) > p
(
xNDy

)
+ p′

(
xNDy

) (
x− xNDy

)
, (13)

and x is not disclosed if the opposite inequality holds. Without mandated transparency, we know from (a

rewriting of) the characterization in Theorem 1 that a signal realization x for an object with profitability

y is disclosed if

p(x) > p
(
xND

)
+
yND

y
p′
(
xND

) (
x− xND

)
, (14)

where remember that yND is the expected profitability conditional on no disclosure under the optimal

disclosure rule. Again, the signal realization x is not disclosed if the opposite inequality holds.

Suppose optimal disclosure rules with and without mandated transparency are such that, for some

profitability level y, we have xND = xNDy . And further suppose that p is locally strictly convex around

xND. In that case, condition (13) must hold for signal realizations x sufficiently close to xND, meaning

that such “local signal realizations” are disclosed to the buyer. In comparison, consider the optimal

policy when the seller has hidden motives. For high-profitability objects (y > yND) and “local bad

news realizations” (x ↑ xND), the opposite inequality to (14) must hold; so that such local bad news

are concealed. Analogously, for low-profitability objects (y < yND), “local good news realizations”

(x ↓ xND) are concealed from the buyer. This argument implies that, if p is locally convex around xND,

then mandated transparency implies a local increase in disclosure. This result is formally stated below in

Proposition 3, along with an opposite result for the case when p is locally concave.

Proposition 3. Suppose d and dm are optimal disclosure rules with hidden motives and under mandated

transparency, respectively. And suppose, for all y ∈ Y , it holds that xND(d) = xNDy (dm) =: x̃ ∈
int(X ).

1. If p is locally strictly convex around x̃, there exist x′ and x′′, with x′ < x̃ < x′′ such that d(x, y) 6

dm(x, y) for almost all (x, y) with x ∈ (x′, x′′); and strictly so for an open subset of such (x, y).

2. If p is locally strictly concave around x̃, there exist x′ and x′′, with x′ < x̃ < x′′ such that
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d(x, y) > dm(x, y) for almost all (x, y) with x ∈ (x′, x′′); and strictly so for an open subset of

such (x, y).

Also from conditions (13) and (14), we can see that, compared to the benchmark with hidden motives,

mandated transparency implies a weak increase in the disclosure of bad news, and a weak decrease in

the disclosure of good news, about objects with high profitability. To see, if the object’s profitability is

high (y > yND), and a signal realization is “bad news” (x < xND), then condition (14) holding implies

that condition (13) holds as well. This means that if such bad news are disclosed under hidden motives,

then they are disclosed as well under mandated transparency. Conversely, for “good news” (x > xND),

condition (13) implies condition (14), so that their disclosure under mandated transparency implies that

they are also disclosed under hidden motives. Proposition 4 states this result formally, as well as an

analogous result for low profitability objects (y < yND).

Proposition 4. Suppose d and dm are optimal disclosure rules with hidden motives and under mandated

transparency, respectively. And suppose, for all y ∈ Y , it holds that xND(d) = xNDy (dm) =: x̃; and let

ỹ := yND(d). The following statement holds for almost all (x, y) ∈ X × Y:

d(x, y) > dm(x, y)⇔ (x− x̃)(y − ỹ) > 0.

Both Propositions 3 and 4 start from the assumption that optimal disclosure rules with and without

mandated transparency lead to the same beliefs of no disclosure xND = xNDy (for all profitability levels

y ∈ Y). If the distribution of signal realizations FX|y is independent from y, then we know from Theorem

2 that in the optimal disclosure rule under mandated disclosure, we have that xNDy is also independent

of y. Moreover, as the distribution of profitabilities becomes more centered around its expected value,

it must be that the value xND in the optimal rule under hidden motives approaches such value xNDy .

Indeed, in the limit as the distribution FY becomes the degenerate distribution, it must be that these two

values coincide.

5 Alternative Communication Protocols

My model makes two main assumptions regarding the communication protocol. First, the seller can

commit to a rule to disclose signal realizations, prior to the object’s profitability or the “evidence” about

its value being drawn. Second, the seller can use only disclosure policies, either revealing or not revealing

a realized piece of information about the object’s value, rather than committing to more general signal

structures. In this section, I consider a variations of the model, which drops the commitment from the

communication protocol. Under that new protocol, I investigate whether mandating transparency about

the seller’s motives improves the informativeness of their advice to the buyer. Next, I briefly comment

on a variation of the model in which the seller can commit to more general signal structures.
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5.1 No Commitment Disclosure Protocol

A direct reading of the results in section 4 is that they delineate conditions under which a policy maker

should or should not institute a transparency policy: such decision should be made based on the curva-

ture of the buyer’s demand for the object. But beyond this normative implication, the results also refine

our theoretical understanding of regulation in advice markets. Specifically, I highlight that in informa-

tion design models with commitment, the ‘alignment between sender and receiver preferences’ and the

‘opaqueness of the sender’s motives’ are distinct objects; and it is not necessarily true that regulations

that reduce the latter would also make the sender’s interests more aligned with those of the receiver.

And even in contexts where transparency does improve the alignment between the advisor and advisee’s

interests — such as when the demand function is convex, in the model — it does so because, as a byprod-

uct the transparency of their motives, the sender’s effective objective function becomes “more convex,”

therefore inducing them to optimally disclose more evidence. This is in contrast with what happens in

a disclosure environment without commitment — discussed below — in which the transparency of the

seller’s motives induces the unravelling of uninformative equilibria.

To see this contrast, I now introduce a version of the model where there is no commitment in the

communication protocol. In this section, we allow the support of the object’s profitability to include

negative profitability values, so we may have ymin < 0 < ymax,14 in which case the buyer is unsure

whether the profitability is such that the seller wishes to maximize the object’s probability of sale or to

minimize it. Consider the following disclosure protocol with no commitment: First, the seller observes

the object’s profitability and a signal realization. After that, the seller chooses whether to disclose the

signal realization (a piece of evidence about the object’s value) to the buyer. The buyer observes the

disclosed evidence – or the fact that no evidence was disclosed – and forms a posterior mean about the

object’s value, taking into account the seller’s equilibrium strategy. As before, the buyer does not observe

the object’s profitability.The equilibrium notion is Perfect Bayesian Equilibrium.

Proposition 5. For any demand function p, an equilibrium exists, and any equilibrium disclosure strategy

d∗ has a threshold structure: d∗(x, y) ∈ {0, 1} and15

d∗(x, y) = 1⇔ (x− x̄)y > 0,

for some x̄ ∈ X , satisfying x̄ = E [x|(x− x̄)y < 0] if {(x− x̄)y < 0} 6= ∅.

Suppose the object’s profitability is always positive (ymin > 0), and conjecture a threshold equilib-

rium with some evidence concealment – that is, suppose x̄ ∈ (xmin, xmax). Then, because y is always

greater than 0, it must be that x̄ > E [x|(x− x̄)y < 0], and thus the equilibrium condition in Proposition

5 is not satisfied. Such a conjectured equilibrium would unravel: the buyer’s posterior upon observing

non-disclosure would be E [x|(x− x̄)y < 0], which is strictly smaller than x̄. Consequently, when the

14Note that the characterization of optimal disclosure rules under the commitment protocol, given in Theorem 1, also applies
when ymin < 0.

15Assuming that, when indifferent, the seller discloses the signal realization.
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seller draws a signal realization just under x̄, they strictly prefer to reveal it to the buyer, which is in-

consistent with the initially conjectured equilibrium. An analogous unravelling argument applies if the

object’s profitability is always negative (ymax 6 0). However, when profitability can be both positive

or negative, so that 0 ∈ (ymin, ymax), then any equilibrium involves partial disclosure. There is some

interior threshold x̄ such that the seller discloses (only and) all “good news” about the object (x > x̄)

when profitability is positive, and (only and) all “bad news” (x 6 x̄) about the object when profitability

is negative. Partially uninformative equilibria do not unravel, because, upon observing non-disclosure,

the buyer does not know whether the seller has “good news” but negative profitability or “bad news” but

positive profitability.16

Note also that equilibrium disclosure strategies as described in the proposition are independent of

the shape of the demand function p – in contrast to the model with commitment, where the shape of

optimal disclosure rules depends on the curvature of p. This happens because the seller makes their

disclosure decision only after seeing the signal realization; and at that point their best response is guided

solely from comparing the given realization to the buyer’s belief of no disclosure. If the profitability

of the object is positive, then, because the demand function is strictly increasing, the best response is

to disclose good news (better than the belief of no disclosure), and conceal otherwise. If instead the

profitability of the object is negative, the best response is to disclose bad news, and conceal otherwise.

This implies that the “threshold profitability” is always 0, which divides positive profitability objects

from negative profitability objects.

Now return to the question of whether mandated transparency incentivizes the seller to disclose in-

formation about the object’s value to the buyer. Proposition 6 shows that, in contrast with the benchmark

with commitment, in this case mandated transparency induces the seller to reveal all their evidence about

the object’s value; and this result holds independently of the curvature of the buyer’s demand function.

Proposition 6. Under a mandated transparency policy that reveals the object’s profitability to the buyer,

full disclosure is the unique equilibrium of the disclosure game with no commitment.

5.2 Unconstrained Signaling Technology

The usual assumption in information design models is that a sender (the seller, in this case) commits a

signal a map from states of the world (the signal realizations about the object’s value) into distributions

of messages to inform a receiver (the buyer) about the state. The sender’s choice of such a map is

unrestricted. Contrastingly, in this paper, I assumed that the sender is restricted to a class of “signaling

strategies:” the class of simple disclosure rules, in which the sender’s message either fully conveys the

information in a piece of evidence, or is “silent.” Such silence is a message in itself, which conveys to

the receiver that the state of the world is “one of the value-profitability pairs that would lead the sender

to stay silent.”
16The existence of partly-uninformative equilibria as described in Proposition 5 is in line with Seidmann and Winter’s (1997)

observation that in disclosure environments where the sender’s preferred action depends on their type, there may exist equilibria
in which their type is not always revealed in equilibrium.
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In the constrained information design problem I study, Theorem 1 provides quite a complete char-

acterization of the seller’s optimal messaging strategy. In comparison, a characterization of the sender’s

optimal signal in the equivalent unconstrained design problem is elusive – Rayo and Segal (2010) provide

a partial characterization of the optimal signal when the demand function p is affine. Regardless, some

of the results in this paper also hold in the “unconstrained design version” of the problem. For example,

Proposition 2, and its Corollary 3 would still be true, so that transparency may be detrimental to the

seller’s incentives to relay information about the object’s value to the buyer, depending on the curvature

of the buyer’s demand function.

6 Conclusion

This paper models an environment in which an advisee seek information provided by an advisor with

hidden motives. The advisee is a buyer who is informed by a seller about the value of an object that is on

sale. The buyer understands that the seller is biased towards pushing the sale of the product, but does not

know the extent of the seller’s interest (the degree to which the object’s sale is profitable to the seller).

This environment describes many possible applied contexts, including the relation between an investor

and their financial advisor, or that between a “follower” and their preferred social media influencer.

From a theoretical perspective, the first contribution of the paper is characterizing optimal disclosure

rules in an environment where the seller with “hidden motives” — as in Rayo and Segal (2010) — can

commit to a rule to disclose realizations of a signal about the object’s value to the buyer. Theorem 1

shows that such rules generally have a threshold structure: there exists a threshold value and a threshold

profitability function that define four “quadrants” in the value × profitability space. The seller optimally

discloses realizations in the first and third quadrants — in which seller and buyer have aligned interests

— and conceals realizations in the second and fourth quadrant, which correspond to misaligned interests

realizations. The subsequent analysis shows how features of the threshold profitability function are

determined by the curvature of the buyer’s demand function.

I contribute also to a regulatory debate, regarding whether policies should be instituted that require

advisors to reveal their interests to their advisees. Such “mandated transparency” policies are the most

common regulations proposed to address the mis-alignment between advisor and advisee’s interests; for

example, the SEC mandates that financial advisors disclose commissions received from financial product

providers, and the FTC and UK CMA advise social media influencers to clarify their relationships with

brands to their followers. Proposition 2 argues that the effectiveness of a transparency policy can depend

on the curvature of the buyer’s demand function, highlighting that there is no “one size fits all” policy

to optimally regulate advice markets. Rather, it is important to fit the regulation to specific features

of each market. Using the interpretation introduced in Section 2.1, which relates the curvature of the

buyer’s demand function to the degree of competition in the relevant market, we learn that mandating

transparency is an effective policy in very competitive markets, but may not be so in markets where the

buyer does not have many alternatives to the object being offered by the seller.
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Finally, I study a variation of the benchmark communication protocol of “disclosure with commit-

ment.” Specifically, I show that if the seller communicates through disclosure of verifiable information

without commitment, then mandated transparency is an effective policy, inducing the seller to be perfectly

informative regardless of the shape of the buyer’s demand function. To the degree that commitment is a

stand-in assumption representing the degree of recurrence in the sender-receiver relationship, my analysis

shows that the importance of reputation-building between advisor and advisee also impacts the optimal

regulation of advice markets.
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A Proofs

Statements and Proofs of Claims 1 and 2

This section completes the proof in the main text, showing that any disclosure rule that does not satisfy

the threshold structure described in (4) can be improved upon by a rule that does satisfy (4). To that end,

consider d and d̂ as in (6) and (7). I prove the following two claims used in the main text.
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Claim 1. d and d̂ produce the same overall probability of sale.

Proof.

E[P (y, d̂)]− E[P (y, d)] =

=

∫
Y

∫
X

[
p(x)− p(xND)

] [
d̂(x, y)− d(x, y)

]
dFX|y(x)dFY (y)

=

∫
X

[
p(x)− p(xND)

] ∫
Y

[
d̂(x, y)− d(x, y)

]
dFY |x(y)dFX(x) = 0

where FY |x is the profitability distribution conditional on a signal realization x and FX is the marginal

distribution of signal realizations. The first equality uses the definition of P (y, d) and the third is due to

d and d̂ disclosing each realization with the same probability, as in (8).

Claim 2. d̂ induces a larger covariance between sales and profitability than d.

Proof.

Cov
[
y, P (y, d̂)

]
− Cov

[
y, P (y, d̂)

]
= E

[(
P (y, d̂)− P (y, d)

)
(y − E(y))

]
=

∫
Y

∫
X

[
p(x)− p(xND)

] [
d̂(x, y)− d(x, y)

]
[w − E(y)] dFX|y(x)dFY (y)

=

∫
X

[
p(x)− p(xND)

] ∫
Y

[
d̂(x, y)− d(x, y)

]
[y − E(y)] dFY |x(y)dFX(x) (15)

By the definition of d̂, for x < xND, d̂(x, y) − d(x, y) > 0 when y < ŷ(x) and d̂(x, y) − d(x, y) 6 0

when y > ŷ(x) – but, as given by (8), the expected difference d̂(x, y) − d(x, y) is 0. This, along with

the fact that y − E(y) is increasing in y, implies that∫
Y

[
d̂(x, y)− d(x, y)

]
[y − E(y)] dFY |x(y) 6 0,

when x 6 xND. Analogously, we can show that∫
Y

[
d̂(x, y)− d(x, y)

]
[w − E(y)] dFY |x(y) > 0,

when x > xND. Moreover, these inequalities are strict for a positive measure of signal realizations.

These observations, along with the fact that p is strictly increasing, deliver that the expression in (15) is

strictly positive.

Proof of Theorem 1

Step 1. Suppose d̂ is a disclosure rule such that no disclosure happens with positive probability — that

is,
∫
Y
∫
X

[
1− d̂(x, y)

]
dFX|y(x)dFY (y) > 0 — and suppose d̂ does not satisfy the characterization in
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Theorem 1. Then d can be strictly improved.

For any disclosure rule d such that no disclosure happens with positive probability, the seller’s value is

given by∫
y
yP (y, d)dFY (y) =

∫
y
y

∫
X

[
d(x, y)p(x) + (1− d(x, y))p(xND)

]
dFX|y(x)dFY (y),

where xND =

∫
Y
∫
X x (1− d(x, y)) dFX|y(x)dFY (y)∫

Y
∫
X (1− d(x, y)) dFX|y(x)dFY (y)

.

For y ∈ Y and x ∈ X , we can take a derivative of the sender’s value with respect to d(x, y), to get

∂Π

∂d(x, y)
=y
(
p(x)− p(xND)

)
dFX|y(x)dFY (y)

+

(∫
Y

∫
X
ỹ [1− d(x̃, ỹ)] dFX|ỹ(x̃)dFY (ỹ)

)
p′(xND)

∂xND

∂d(x, y)

Now from the definition of xND, we get

∂xND

∂d(x, y)
=

∫
Y
∫
X (x̃− x)(1− d(x̃, ỹ))dFX|ỹ(x̃)dFY (ỹ)(∫
Y
∫
X (1− d(x̃, ỹ))dFX|ỹ(x̃)dFY (ỹ)

)2 dFX|y(x)dFY (y)

Substituting this into the previous equation, we have

∂Π

∂d(x, y)
=
[
y
(
p(x)− p(xND)

)
− yNDp′(xND)(x− xND)

]
dFX|y(x)dFY (y), (16)

where yND is the average object profitability given non-disclosure. It is easy to check that, if x < xND,

∂Π

∂d(x, y)

> 0, if y < yND
[
p′(xND)(xND−x)
p(xND)−p(x)

]
< 0, if y > yND

[
p′(xND)(xND−x)
p(xND)−p(x)

]
Conversely, if x > xND,

∂Π

∂d(x, y)

> 0, if y > yND
[
p′(xND)(xND−x)
p(xND)−p(x)

]
< 0, if y < yND

[
p′(xND)(xND−x)
p(xND)−p(x)

]
Now take disclosure d̂, which does not satisfy the characterization in Theorem 1. That is, d̂ does not have

a threshold structure as in (4) with x̄ = xND and profitability threshold satisfying

ȳ(x) = yND
[
p′(xND)(xND − x)

p(xND)− p(x)

]
.
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Then it must be that either d̂(x, y) 6= 0 when (16) is negative or d̂(x, y) 6= 1 when (16) is positive. In

each case, d̂ can be strictly improved.

Step 2. Suppose instead that d̂ is the “full disclosure” rule — that is, d(x, y) = 1 almost everywhere.

Then there are two possibilities. First, it may be that full disclosure is a rule that satisfies (4), (5), and

x̄ = xND — for xND = inf(X ) and yND = inf(Y) or xND = sup(X ) and yND = sup(Y). In that

case, full disclosure satisfies the necessary conditions for optimality, as given by the Theorem.

If instead full disclosure is not a rule that satisfies the necessary conditions given in the Theorem, it

must be that the disclosure rule implied by (4), (5), and x̄ = xND, with xND = inf(X ) and yND =

inf(Y), is such that no disclosure happens with positive probability. For this to be the case, there must

exist x ∈ X such that
p′ (inf(X )) (x− inf(X ))

p(x)− p (inf(X ))
> 1.

Similarly, it must be that the disclosure rule implied by (4), (5), and x̄ = xND, with xND = sup(X )

and yND = sup(Y), is such that no disclosure happens with positive probability. For this to be the case,

there must exist x′ ∈ X such that

p′ (sup(X )) (x′ − sup(X ))

p(x′)− p (sup(X ))
< 1.

When such x and x′ exist, we know from Proposition 1 and Lemma 2 that the optimal disclosure rule

must be interior, and so that no disclosure happens with positive probability. Therefore, d̂, the “full

disclosure” rule, is not optimal.

Proof of Lemma 1

Suppose system (9) has a solution with x̂ ∈ int(X ) and ŷ ∈ int(Y), and let dx̂,ŷ be the corresponding

disclosure rule defined by such x̂ and ŷ.

Step 1. Showing that dx̂,ŷ yields strictly higher value to the seller than full disclosure.

For each α ∈ [0, 1], define the following alternative disclosure rule:

1− dα(x, y) =

1− dx̂,ŷ(x, y), if dx̂,ŷ(x, y) = 1

α (1− dx̂,ŷ(x, y)) , otherwise

Note that, because for all α > 0, the probability of no disclosure implied by dα is proportional to that

implied by dx̂,ŷ, it must be that these rules imply the same xND and yND. Therefore, because dx̂,ŷ is

such that x̂ and ŷ solve the system (9), we know that as α decreases, there is an increase in disclosure

for realizations (x, y) such that ∂Π/∂d(x, y), as given by (16), is strictly negative. Therefore, the value

of dα to the seller is strictly increasing in α. Moreover, full disclosure corresponds to the case of α = 0,

which is therefore dominated by dx̂,ŷ.
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Step 2. Showing that any “corner disclosure rule” dx̃,ỹ defined by x̃ ∈ {inf(X ), sup(X )} or ỹ ∈
{inf(Y), sup(Y)} such that no disclosure happens with positive probability cannot be an optimal dis-

closure rule.

For any disclosure rule such that no disclosure happens with positive probability, it must be that

E(x| no disclosure) ∈ int(X ) and E(y| no disclosure) ∈ int(Y) — because F has full support over

X × Y and no mass points. Therefore, if x̃ ∈ {inf(X ), sup(X )} or ỹ ∈ {inf(Y), sup(Y)}, the system

(9) is not satisfied, and by Theorem 1 disclosure rule dx̃,ỹ can be strictly improved.

Proof of Proposition 1

For each x̂ ∈ X and ŷ ∈ Y , define dx̂,ŷ by

(x− x̂)(y − ȳ(x)) > 0⇒ dx̂,ŷ(x, y) = 1, (x− x̄)(y − ȳ(x)) < 0⇒ dx̂,ŷ(x, y) = 0,

where ȳ(x) = ŷ

[
p′(x̂)(x̂− x)

p(x̂)− p(x)

]
.

Proof of Statement 1. Suppose there exist x, x′ ∈ X such that

p′ (inf(X )) (x− inf(X ))

p(x)− p (inf(X ))
> 1 and

p′ (sup(X )) (x′ − sup(X ))

p(x′)− p (sup(X ))
< 1. (17)

Note that, because (17) holds and p is continuously differentiable, for all x̂ ∈ X and ŷ ∈ Y , dx̂,ŷ(x, y) =

0 for some non-empty open subset of X × Y . Therefore, E [x|no disclosure region implied by dx̂,ŷ]

and E [y|no disclosure region implied by dx̂,ŷ] are well defined. Consider the following two continuous

functions

Γ1(x̂, ŷ) = E [x|no disclosure region implied by dx̂,ŷ]− x̂

and Γ2(x̂, ŷ) = E [y|no disclosure region implied by dx̂,ŷ]− ŷ.

For a disclosure rule such that no disclosure happens with positive probability, E(x| no disclosure) ∈
int(X ) and E(y| no disclosure) ∈ int(Y) — because F has full support over X × Y and no mass

points. Consequently, for every ŷ, Γ1 (inf(X ), ŷ) > 0 and Γ1 (sup(X ), ŷ) < 0. Similarly, for every x̂,

Γ2 (x̂, inf(Y)) > 0 and Γ1 (x̂, sup(Y)) < 0. Therefore, by the Pointcaré-Miranda Theorem, there exist

x̂ ∈ int(X ) and ŷ ∈ int(Y) such that both Γ1(x̂, ŷ) and Γ2(x̂, ŷ) are simultaneously equal to 0; which

are solutions to system (9).

Proof of Statement 2. Suppose p is affine. The proof uses the following claim.

32



Claim 3. Let xε = inf(X ) + ε and yε = inf(Y) + ε. Then

lim
ε→0

E [x|no disclosure region implied by dxε,yε ] > inf(X ),

and lim
ε→0

E [y|no disclosure region implied by dxε,yε ] > inf(Y).

Proof. E [x|no disclosure region implied by dxε,yε ] is given by

inf(X )+

[∫ yε

inf(Y)

∫ ∆

ε
xfX|y(inf(X ) + x)fY (y)dxdy +

∫ sup(Y)

yε

∫ ε

0
xfX|y(inf(X ) + x)fY (y)dxdy

]

×

[∫ yε

inf(Y)

∫ ∆

ε
fX|y(inf(X ) + x)fY (y)dxdy +

∫ sup(Y)

yε

∫ ε

0
fX|y(inf(X ) + x)fY (y)dxdy

]−1

,

where I use the notation ∆ = sup(X ) − inf(X ). To assess the limit of this object as ε → 0, I use

L’Hospital’s rule. The derivative of the numerator is

∂NUM
∂ε

=

∫ ∆

ε
xfX|yε(inf(X ) + x)fY (yε)dx−

∫ ε

0
xfX|yε(inf(X ) + x)fY (yε)dx

−
∫ yε

inf(Y)
εfX|y(inf(X ) + ε)fY (y)dy +

∫ sup(Y)

yε

εfX|y(inf(X ) + ε)fY (y)dy.

The derivative of the denominator is

∂DEN
∂ε

=

∫ ∆

ε
fX|yε(inf(X ) + x)fY (yε)dx−

∫ ε

0
fX|yε(inf(X ) + x)fY (yε)dx

−
∫ yε

inf(Y)
fX|y(inf(X ) + ε)fY (y)dy +

∫ sup(Y)

yε

fX|y(inf(X ) + ε)fY (y)dy.

Therefore we have

lim
ε→0

E [x|no disclosure region implied by dxε,yε ] = inf(X ) +
limε→0

∂NUM
∂ε

limε→0
∂DEN
∂ε

=

= inf(X ) +

∫ ∆
0 xfX| inf(Y)(inf(X ) + x)fY (inf(Y))dx∫ ∆

0 fX| inf(Y)(inf(X ) + x)fY (inf(Y))dx+
∫ sup(Y)

inf(Y) fX|y(inf(X ))fY (y)dy
> inf(X ),

where the inequality is due to fY and fX|y, for each y, being strictly positive densities. The second part

of the second observation — that limε→0 E [y|no disclosure region implied by dxε,yε ] > inf(Y) — can

be shown analogously.

By Claim 3, we know that there exists some δ > 0 such that Γ1(inf(X ) + δ, inf(Y) + δ) > 0 and
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Γ2(inf(X ) + δ, inf(Y) + δ) > 0. Moreover, we have that for any ŷ > inf(Y) + δ, it also holds that

E [x|no disclosure] > δ, and therefore Γ1(inf(X ) + δ, ŷ) > 0

(This is true because, as ŷ increases, the “no disclosure” region with x > δ becomes larger and the “no

disclosure region with x < δ becomes smaller.) Consequently, for all ŷ > inf(Y) + δ, Γ1(inf(X ) +

δ, ŷ) > 0. Analogously, for all x̂ > inf(X ) + δ, Γ2(x̂, inf(Y) + δ) > 0.

Now consider the following claim (stated without proof, as it is analogous to that of Claim 3).

Claim 4. Let xε = sup(X )− ε and yε = sup(Y)− ε; then

lim
ε→0

E [x|no disclosure region implied by dxε,yε ] < sup(X ),

and lim
ε→0

E [y|no disclosure region implied by dxε,yε ] < sup(Y).

By Claim 4, we know that there exists some δ′ > 0 such that Γ1(sup(X ) − δ′, sup(Y) − δ′) < 0

and Γ2(sup(X )− δ′, sup(Y)− δ′) < 0. Moreover, we have that for any ŷ < sup(Y)− δ′, it also holds

that Γ1(sup(X ) − δ′, ŷ) < 0. (As ŷ decreases, the “no disclosure” region with x < δ′ becomes larger

and the “no disclosure region with x > δ′ becomes smaller.) Consequently, for all ŷ < sup(Y) − δ′,
Γ1(sup(X )− δ′, ŷ) < 0. Analogously, for all x̂ < sup(X )− δ′, Γ2(x̂, sup(Y)− δ) < 0.

Putting all together, there exists a convex compact subset X̃ ×Ỹ ofX×Y , defined by X̃ = [inf(X )+

δ, sup(X )− δ′] and Ỹ = [inf(Y) + δ, sup(Y)− δ′] such that for all ŷ ∈ Ỹ ,

Γ1(inf(X̃ ), ŷ) < 0, and Γ1(sup(X̃ ), ŷ) > 0.

Similarly, for all x̂ ∈ X̃ ,

Γ2(x̂, inf(Ỹ)) < 0, and Γ2(x̂, sup(Ỹ)) > 0.

Therefore, by the Pointcaré-Miranda Theorem, there exist x̂ ∈ int(X̃ ) and ŷ ∈ int(Ỹ) such that both

Γ1(x̂, ŷ) and Γ2(x̂, ŷ) are simultaneously equal to 0; which are solutions to system (9).

Alternative Proof of Statement 2. This is an additional argument showing that full disclosure is not an

optimal disclosure rule when p is an affine function. In that case, the optimal disclosure rule must conceal

signal realizations with positive probability, and therefore induce xND ∈ int (X ) and yND ∈ int (Y). By

Theorem 1, x̂ = xND and ŷ = yND must therefore be a solution to system (9).

The demand function is affine, given by p(x) = a+bx. For any disclosure rule d, the first term in the

seller’s payoff expressed in (3) must be E(y)E[P (y, d)] = E(y) [a+ bE(x)]. (This is a straightforward

consequence of the martingale property of beliefs, or “Bayesian plausibility.”) Therefore the overall

probability of sale is independent of the disclosure rule.

Now let d1 be the full disclosure rule; and take any other disclosure rule dx̂,ŷ, defined by interior

thresholds x̄ and ȳ. It must be that, for y < ȳ, P (y, d) < P (y, d1) and, for y > ȳ, P (y, d) > P (y, d1).
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Consequently, the covariance of sales and profitability is larger under d than under d1; and thus d1 is not

an optimal disclosure rule.

Proof of Statement 3. Let dαx̂,ŷ be the disclosure rule implied by thresholds x̂ and ŷ when the demand

function is given by p = αp1 + (1 − α)p2. Because p2 is continuously differentiable, regardless of

its curvature, the disclosure rule dαx̂,ŷ induces no disclosure with positive probability, except perhaps if

(x̂, ŷ) = (inf(X ), inf(Y)) or (x̂, ŷ) = (sup(X ), sup(Y)).

Moreover, for each x̂ ∈ int(X ) and ŷ ∈ int(Y), the values

Γα1 (x̂, ŷ) = E
[
x|no disclosure region implied by dαxε,yε

]
− x̂

and Γα2 (x̂, ŷ) = E
[
y|no disclosure region implied by dαxε,yε

]
− ŷ

are continuous functions of α. We know by Statement 2 that, for α = 1, there is an interior point (x̂, ŷ)

such that Γα1 and Γα2 are simultaneously equal to 0. By continuity, it must be that there exists ᾱ ∈ (0, 1)

such that if α > ᾱ, then there is an interior point (x̂′, ŷ′) such that Γα1 and Γα2 are simultaneously equal

to 0 as well.

Proof of Theorem 2

Part 1. Statement of the seller’s problem.

Suppose the seller chooses disclosure rule d. Upon observing non-disclosure and profitability y

(under mandated transparency), the buyer’s mean posterior is

xNDy =

∫
X [1− d(x, y)]xdFX|y(x)∫
X [1− d(x, y)]dFX|y(x)

.

And so the probability of sale of object y is

P (y, d) =

∫
X

[
d(x, y)p(x) + (1− d(x, y))p(xNDy )

]
dFX|y(x).

Note that the probability of sale of object y is thus independent of the disclosure rule used for objects

with profitability y′ 6= y. And so the seller’s problem is separable across profitability levels. Therefore

maximizing Π(d) over d : X × Y → [0, 1] is equivalent to maximizing, for each y ∈ Y , yP (y, d(·, y)),

over d(·, y) : X → [0, 1].

Part 2. Characterization of optimal disclosure rule.

We proceed similarly to the proof of Theorem 1. Fixing some y ∈ Y and x ∈ X , we can take a
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derivative of the sender’s value with respect to d(x, y), to get

∂Π

∂d(x, y)
=y
(
p(x)− p(xND)

)
dFX|y(x)dFY (y)

+

(∫
X
ỹ [1− d(ỹ, x̃)] dFX|ỹ(x̃)

)
p′(xNDy )

∂xND

∂d(x, y)

Now from the definition of xNDy , we get

∂xNDy
∂d(x, y)

=

∫
X (x̃− x)(1− d(x̃, y))dFX|ỹ(x̃)(∫
X (1− d(x̃, y))dFX|ỹ(x̃)

)2 dFX|y(x)dFY (y)

Substituting this into the previous equation, we have

∂Π

∂d(x, y)
=y
[(
p(x)− p(xNDy )

)
− p′(xNDy )(x− xNDy )

]
dFX|y(x)dFY (y). (18)

If d̂ is a disclosure rule that induces no disclosure with positive probability and does not satisfy (11) and

(12) as given in the Theorem, then there is a positive measure of (x, y) such that (18) is strictly positive

but d̂(x, y) < 1 or such that (18) is strictly negative but d̂(x, y) > 0. This means that d̂ can be strictly

improved, and cannot be a solution to the seller’s problem.

Now we must consider the possibility that the solution is “full disclosure.” For each ŷ ∈ Y , and for

each x̂ ∈ X , let dx̂(·, ŷ) be defined by

p(x) > p (x̂) + p′ (x̂) (x− x̂)⇒ dx̂(x, ŷ) = 1,

and p(x) < p (x̂) + p′ (x̂) (x− x̂)⇒ dx̂(x, ŷ) = 0.

First suppose for every x̂ ∈ X , dx̂(·, ŷ) implies that an open interval of realizations inX are not disclosed.

Then the map Γŷ(x̂) = E (x| no disclosure region implied by dx̂(·, ŷ)) is a continuous self map in the

compact convex set X ; and therefore has a fixed point. As in Lemma 1, we can show that the disclosure

rule implied by this fixed point is a strict improvement over full disclosure. If instead there exists some

x̂ ∈ X such that dx̂(·, ŷ) implies almost all realizations are disclosed, then full disclosure is a disclosure

rule that satisfies the necessary conditions given by in the Theorem.

Proof of Proposition 2

If p is strictly convex, then full disclosure is the only disclosure rule that satisfies the necessary conditions

(11) and (12) in Theorem 2. It is therefore the optimal disclosure rule for the seller under mandated

transparency; which trivially has more disclosure than the optimal disclosure rule for the seller with

hidden motives.

If p is strictly concave, then no disclosure is the only disclosure rule that satisfies the necessary

conditions (11) and (12) in Theorem 2. It is therefore the optimal disclosure rule for the seller under
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mandated transparency; which trivially has less disclosure than the optimal disclosure rule for the seller

with hidden motives.

Proof of Proposition 3

Proof of Statement 1. If p is locally strictly convex around x̃, there exist x′, x′′ ∈ X with x′ < x̃ < x′′

such that

p(x) > p (x̃) + p′ (x̃) (x− x̃) .

From Theorem 2, we therefore know that dm(x, y) = 1 for almost all (x, y) with x ∈ [x′, x′′]. Conse-

quently, d(x, y) 6 dm(x, y) for almost all (x, y) with x ∈ (x′, x′′). Further note that, for each y > yND

(the expected profitability of no disclosure implied by d), there exists x̂(y) such that if x ∈ (x̃, x̂(y)),

p(x) < p (x̃) +
yND

y
p′ (x̃) (x− x̃) .

Therefore, by Theorem 1, almost all such realizations (x, y) are optimally concealed. And therefore

there is an open set of such (x, y) with x ∈ [x′, x′′] such that d(x, y) < dm(x, y).

Proof of Statement 2. The proof of the second statement is analogous.

Proof of Proposition 4

Suppose (x, y) is such that (x− x̃)(y − ỹ) > 0. Then if

p(x) > p (x̃) +
ỹ

y
p′ (x̃) (x− x̃) ,

it must be that

p(x) > p (x̃) + p′ (x̃) (x− x̃)

also holds. Therefore, if (x − x̃)(y − ỹ) > 0, dm(x, y) = 1 implies d(x, y) = 1; and so d(x, y) >

dm(x, y). If instead (x, y) is such that (x− x̃)(y − ỹ) < 0, then

p(x) > p (x̃) + p′ (x̃) (x− x̃)⇒ p(x) > p (x̃) +
ỹ

y
p′ (x̃) (x− x̃) .

Consequently, in that case d(x, y) = 1 implies dm(x, y) = 1; and so d(x, y) 6 dm(x, y).

Proof of Proposition 5

Assume ymin < 0 < ymax. (The case where all profitabilities are positive or all profitabilities are

negative is discussed in the main text.)

Suppose the buyer’s mean posterior about the object’s value after observing non-disclosure is x̂ ∈ X .

Then a seller with profitability y > 0, upon observing a signal realization x, will choose to disclose it
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if and only if x > x̂ (assuming that the seller discloses when indifferent). Conversely, a seller with

profitability y < 0 will disclose signal realization x if and only if x 6 x̂. A seller with profitability

y = 0 is always indifferent between disclosing and not disclosing, and we resolve this indifference with

disclosure.

And so Bayesian consistency requires that, in this equilibrium,

x̂ = E [x|(x− x̂)y < 0] ,

where we note that the set {(x − x̄)y < 0} has positive probability, because the joint distribution of

profitabilities and signal realizations has full support.

Regarding existence, I remark that there exists some x̂ satisfying

x̂ = E [x|(x− x̂)y < 0] .

To see that, note that E [x|(x− x̂)y < 0] ∈ (xmin, xmax) for both x̂ = xmin and x̂ = xmax (both

because the joint distribution of profitabilities and signal realizations has full support). And so, by

continuity of E [x|(x− x̂)y < 0], there must be some solution to x̂ = E [x|(x− x̂)y < 0]. Given such

x̂, it is easy to see that d∗(x, y) ∈ {0, 1} and d∗(x, y) = 1 ⇔ (x − x̂)y > 0 defines an equilibrium

disclosure strategy.

Proof of Proposition 6

Under mandated transparency, the buyer forms mean posteriors about the object separately for each

profitability level y. It follows from a standard unravelling argument (reproduced below) that there can

be no concealment in equilibrium.

Suppose for some y ∈ Y , X ⊆ X is the set of signal realizations that the seller does not disclose

to the buyer; that is, so that d(x, y) < 1 if x ∈ X. And suppose X is a set with positive probability

according to FX|y. Then upon seeing no disclosure, and that the object’s profitability is y, the buyer’s

“no disclosure” belief is

xNDy =

∫
X x(1− d(x, y))fX|y(x)dx∫
X (1− d(x, y))fX|y(x)dx

.

From this construction, it must be that there is a positive probability that x ∈ X and x > xNDy . And

therefore, if one such signal x realizes, the seller’s best response is to disclose it to the buyer, thereby

deviating from the candidate equilibrium strategy d(x, y) < 1. We can therefore conclude that, for each

y, any d(·; y) such that no disclosure happens with positive probability according to FX|y cannot be an

equilibrium disclosure strategy.

And so it follows that the unique equilibrium disclosure strategy is full disclosure.
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B Numerical Exercise in Sections 3.2.1 and 3.2.2

B.1 Convex Case: Section 3.2.1

We wish to find x̂ and ŷ such that, given thresholds

x̄ = x̂ and

ȳ(x) = ŷ

[
2x̂

x̂+ x

]
,

and the disclosure rule as described in Theorem 1 (and depicted in the left-hand panel of Figure 1), these

values also satisfy x̂ = E(x|no disclosure) and ŷ = E(y|no disclosure). This problem corresponds to

the following system:

x̂ = A(x̂, ŷ)/B(x̂, ŷ),

ŷ = C(x̂, ŷ)/D(x̂, ŷ),

where A(x̂, ŷ)/B(x̂, ŷ) is the expected value of x in the no disclosure region for the disclosure rule

defined by x̂ and ŷ. Similarly, C(x̂, ŷ)/D(x̂, ŷ) is the expected value of y in the no disclosure region for

the disclosure rule defined by x̂ and ŷ. The expressions for each of these objects are

A(x̂, ŷ) =

∫ x̂

x̃

[
1− 2x̂ŷ

x̂+ x

]
xdx+

∫ 1

x̂

2x̂ŷ

x̂+ x
xdx

=
x̂2

2
− x̃2

2
− 2x̂ŷ [x− log(x+ x̂)x̂]x̂x̃ + 2x̂ŷ [x− x̂ log(x+ x̂)x̂]1x̂

=
x̂2 − x̃2

2
+ 2x̂ŷ(1 + x̃− 2x̂) + 2x̂2ŷ [2 log(2x̂)− log(x̃+ x̂)− log(1 + x̂)] .

B(x̂, ŷ) =

∫ x̂

x̃

[
1− 2x̂ŷ

x̂+ x

]
dx+

∫ 1

x̂

2x̂ŷ

x̂+ x
dx
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x̃ x̂

˜̃y

x̂

˜̃y

ỹ

Figure 4: For different values of x̂ and ŷ, each panel illustrates the definition of the objects x̃, ỹ, and ˜̃y,
used in the calculation of A, B, C, and D in the numerical exercise.

= (x̂− x̃) + 2x̂ŷ [log(1 + x̂) + log(x̂+ x̃)− 2 log(2x̂)] .

C(x̂, ŷ) =

∫ ˜̃y

0
(1− x̂)ydy +

∫ ŷ

˜̃y
(2x̂ŷ − 2x̂y)dy +

∫ ỹ

ŷ
(2x̂y − 2x̂ŷ)dy +

∫ 2

ỹ
x̂ydy

=
(1− x̂)˜̃y2

2
+
x̂(1− ỹ2)

2
+ 2x̂ŷ(2ŷ − ỹ − ˜̃y) + x̂(ỹ2 + ˜̃y2 − 2ŷ2).

D(x̂, ŷ) =

∫ ˜̃y

0
(1− x̂)dy +

∫ ŷ

˜̃y

(
2x̂ŷ

y
− 2x̂

)
dy +

∫ ỹ

ŷ

(
2x̂− 2x̂ŷ

y

)
dy +

∫ 2

ỹ
x̂dy

= (1− x̂)˜̃y + x̂(1− ỹ) + 2x̂(ỹ + ˜̃y − 2ŷ) + 2x̂ŷ
[
2 log(ŷ)− log(ỹ)− log(˜̃y)

]
.

In the equations above, we use x̃ = max{0, x̂(2ŷ − 1)}, ỹ = min{1, 2ŷ}, and ˜̃y = 2ŷx̂
1+x̂ . See Figure

4 for an illustration of the objects x̃, ỹ, and ˜̃y. Numerically, I find that the unique x̂ and ŷ that satisfy the

system are x̂ = 0.5824 and ŷ = 0.5098. Using these values, we can calculate the expected payoffs to

the seller in three benchmarks: full disclosure, no disclosure, and optimal disclosure.

Expected payoff under full disclosure:
1

2

∫ 1

0
x2dx =

1

6
.
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Expected payoff under no disclosure:

1

2

(∫ 1

0
xdx

)2

=
1

8
.

Expected payoff under optimal disclosure:

1

6
+

∫ ˜̃y

0

[∫ 1

x̂
(x̂2 − x2)dx

]
ydy +

∫ ŷ

˜̃y

[∫ 2x̂ŷ
y
−x̂

x̂
(x̂2 − x2)dx

]
ydy +

∫ ỹ

ŷ

[∫ x̂

2 x̂ŷ
y
−x̂

(x̂2 − x2)dx

]
ydy

+

∫ 1

ỹ

[∫ x̂

0
(x̂2 − x2)dx

]
ydy =

1

6
+

∫ ˜̃y

0

[
x̂2 − 2

3
x̂3 − 1

3

]
ydy

+

∫ ŷ

˜̃y

[
2x̂3ŷ

y
− 2x̂3 − 1

3

(
2x̂ŷ

y
− x̂
)3

+
x̂3

3

]
ydy −

∫ ỹ

ŷ

[
2x̂3ŷ

y
− 2x̂3 − 1

3

(
2x̂ŷ

y
− x̂
)3

+
x̂3

3

]
ydy

+

∫ 1

ỹ

2

3
x̂3ydy =

=
1

6
+

[
x̂2 − 2

3
x̂3 − 1

3

] ˜̃y2

2
+

2

3
x̂3

(
1− ỹ2

2

)
+ 2x̂3ŷ(2ŷ − ˜̃y − ỹ)− 5

3
x̂3

[
ŷ2 −

˜̃y2

2
− ỹ2

2

]

−
∫ ŷ

˜̃y

1

3

(
2x̂ŷy2 − x̂y3

)3
dy +

∫ ỹ

ŷ

1

3

(
2x̂ŷy2 − x̂y3

)3
dy = 0.1885

B.2 Concave Case: Section 3.2.2

We wish to find x̂ and ŷ such that, given thresholds

x̄ = x̂, and

ȳ(x) = ŷ

[
2(1− x̂)

2− ŷ − x

]
.

and the disclosure rule as described in Theorem 1 (and depicted in the right-hand panel of Figure 1),

these values also satisfy x̂ = E(x|no disclosure) and ŷ = E(y|no disclosure). This problem corresponds

to the following system:

x̂ = A(x̂, ŷ)/B(x̂, ŷ),

ŷ = C(x̂, ŷ)/D(x̂, ŷ),

where A, B, C, D are given by the following:
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A =

∫ x̂

0
xdx− 2ŷ(1− x̂)

∫ x̂

0

x

2− x̂− x
dx+ 2ŷ(1− x̂)

∫ x̃

x̂

x

2− x̂− x
dx+

∫ 1

x̃
xdx

=
x̂2

2
+

1

2
− x̃2

2
+ 2ŷ(1− x̂)(2x̂− x̃) + 2ŷ(1− x̂)(2− x̂) [2 log(2− 2x̂)− log(2− x̂− x̃)− log(2− x̂)]

B =

∫ x̂

0

[
1− 2ŷ(1− x̂)

2− x̂− x

]
dx+

∫ x̃

x̂

2ŷ(1− x̂)

2− x̂− x
dx+

∫ 1

x̃
1dx

= x̂+ (1− x̃) + 2ŷ(1− x̂) [2 log(2− 2x̂)− log(2− x̂− x̃)− log(2− x̂)]

C =

∫ ŷ

0
(1− x̂)ydy +

∫ ˜̃y

ŷ
[(x̂− 1)y + 2ŷ(1− x̂)] dy +

∫ ŷ

ỹ
[(2− x̂)y − 2ŷ(1− x̂)] dy +

∫ 1

ŷ
x̂ydy

= (1− x̂)
ŷ2

2
+ x̂

(
1

2
− ŷ2

2

)
+ 2ŷ(1− x̂)

(
˜̃y + ỹ − 2ŷ

)
+ (x̂− 1)

( ˜̃y2

2
− ŷ2

2

)
+ (2− x̂)

(
ŷ2

2
− ỹ2

2

)
.

D =

∫ ŷ

0
(1− x̂)dy +

∫ ˜̃y

ŷ

(
x̂− 1 +

2ŷ(1− x̂)

y

)
dy +

∫ ŷ

ỹ

(
2− x̂− 2ŷ(1− x̂)

y

)
dy +

∫ 1

ŷ
x̂dy

= ŷ(1− x̂) + (1− ŷ)x̂+ (x̂− 1)(˜̃y − ŷ) + (2− x̂)(ŷ − ỹ) + 2ŷ(1− x̂)
(
log ˜̃y + log ỹ − 2 log ŷ

)
.

In the equations above, we use x̃ = min{1, x̂+2−2ŷ(1−x̂)}, ỹ = 2ŷ(1−x̂)
2−x̂ , and ˜̃y = min

{
1, 2ŷ(1−x̂)

1−x̂

}
.

Numerically, I find that the unique x̂ and ŷ that satisfy the system are x̂ = 0.5397 and ŷ = 0.5402. Using

these values, we can calculate the expected payoffs to the seller in three benchmarks: full disclosure, no

disclosure, and optimal disclosure.

Expected payoff under full disclosure:

1

2

∫ 1

0
(2x− x2)dx =

1

3
.

Expected payoff under no disclosure:

1

2

[
2

(∫ 1

0
xdx

)
−
(∫ 1

0
xdx

)2
]

=
3

8
.
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Expected payoff under optimal disclosure:

1

2

(
2x̂− x̂2

)
+

∫ ỹ

0

[∫ x̂

0

(
2(x− x̂)− (x2 − x̂2)

)
dx

]
ydy

+

∫ ŷ

ỹ

[∫ x̂

2−x̂− 2ŷ(1−x̂)
y

(
2(x− x̂)− (x2 − x̂2)

)
dx

]
ydy

+

∫ ˜̃y

ŷ

[∫ 2−x̂− 2ŷ(1−x̂)
y

x̂

(
2(x− x̂)− (x2 − x̂2)

)
dx

]
ydy +

∫ 1

˜̃y

[∫ 1

x̂

(
2(x− x̂)− (x2 − x̂2)

)
dx

]
ydy

=
1

2

(
2x̂− x̂2

)
+

∫ ỹ

0

(
2

3
x̂3 − x̂2

)
ydy +

∫ 1

˜̃y

[
−2

3
x̂3 + 2x̂2 − 2x̂+

2

3

]
ydy

+

∫ ŷ

ỹ

[
(x̂2 − 2x̂)

(
2x̂− 2 +

2ŷ(1− x̂)

y

)
+ x̂2 −

(
2− x̂− 2ŷ(1− x̂)

y

)2

− x̂3

3

+
1

3

(
2− x̂− 2ŷ(1− x̂)

y

)3 ]
ydy −

∫ ˜̃y

ŷ

[
(x̂2 − 2x̂)

(
2x̂− 2 +

2ŷ(1− x̂)

y

)
+ x̂2

−
(

2− x̂− 2ŷ(1− x̂)

y

)2

− x̂3

3
+

1

3

(
2− x̂− 2ŷ(1− x̂)

y

)3 ]
ydy = 0.3907.
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